(Problem 33)Digit canceling fractions
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that49/98 = 4/8, which is correct, is obtained by cancelling the 9s.
We shall consider fractions like, 30/50 = 3/5, to be trivial examples.
There are exactly four non-trivial examples of this type of fraction, less than one in value, and containing two digits in the numerator and denominator.
If the product of these four fractions is given in its lowest common terms, find the value of the denominator.
#include<stdio.h> #include<string.h> #include<math.h> #include<ctype.h> #include<stdlib.h> #include<stdbool.h> void swap(int *a, int *b) { int t; t=*a; *a=*b; *b=t; } int gcd(int a, int b) { int r; if (a < b) swap(&a,&b); if (!b) return a; while ((r = a % b) != 0) { a = b; b = r; } return b; } void find() { int i; int M,N; M=N=1; for(i=12; i<50; i++) { for(int j=i+1; j<100; j++) { int t=gcd(i,j); if(t==1 || i/t>10 || j/t>10 || i%10!=j/10) continue; else { int a=i/10,b=j%10; if(a/gcd(a,b)==i/t && b/gcd(a,b)==j/t) { M*=i/t; N*=j/t; } } } } printf("%d\n",N/gcd(M,N)); } int main() { find(); return 0; }
Answer:
|
100 |
作者:cpoint
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.