Loading

数据挖掘(二)-经典算法

数据挖掘经典算法

先描述各种算法的基本知识与优略,后续会推出所有单个算法的具体描述、推导、代码。

C4.5决策树

C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1.用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2.在树构造过程中进行剪枝;
3.能够完成对连续属性的离散化处理;
4.能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。
其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效(相对的CART算法只需要扫描两次数据集,以下仅为决策树优缺点)。
优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配问题。
适用数据类型:数值型和标称型。

K-means算法

k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。

优点:容易实现。
缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢。
适用数据类型:数值型数据。

SVM(Support vector machines)

支持向量机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。

优点:泛化错误率低,计算开销不大,结果易解释。
缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题。
适用数据类型:数值型和标称型数据。

标称型数据:标称型目标变量的结果只在有限目标集中取值,如真与假(标称型目标变量主要用于分类)
一般在有限的数据中取,而且只存在‘是’和‘否’两种不同的结果(一般用于分类)。

The Apriori algorithm

Apriori算法是一种最具影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称:频集

优点:易编码实现。
缺点:在大数据集上可能较慢。
适用数据类型:数值型或者标称型数据。

项的集合称为项集。包含k个项的项集称为k-项集。项集的出项频率是包含项集的事务数,简称为项集的频率,支持度计数或计数。注意,定义项集的支持度有时称为相对支持度,而出现的频率称为绝对支持度。如果项集I的相对支持度满足预定义的最小支持度阈值,则I是频繁项集。

最大期望(EM)算法

在统计学中,最大期望(EM,Expectation-Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

最大似然估计:https://baike.baidu.com/item/最大似然估计

PageRank算法

PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

AdaBoost算法

AdaBoost是一种迭代算法,其核心思想是针对同一训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过的权值的新数据集送给下层分类器训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策器。

优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调整。
缺点:对离群点敏感。
适用数据类型:数值型和标称型数据。

分类器的强弱不以准确率为标准,准确率高不代表该分类器为强分类器。
分类器的强弱之分以分类器的稳定性为评估标准,分类器稳定性越强,分类器越强;分类器越不稳定,分类器越弱。
分类器的稳定性指在输入数据发生变化时,分类器预测结果的稳定性。举个例子,对于一个样本集,随机划分为训练集和测试集。在第一次训练模型预测准确率为56%,而第二次训练模型预测准确率则是78%,那么可以说这个模型是不稳定的,该分类器是不稳定分类器,由此属于弱分类器。因此可以得出结论:分类器的不稳定性来自于数据的不确定性和分类器本身对数据的自适应度。

KNN:k-nearest neighbor classification

K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最近邻)的样本中的大多数属于某一类别,则该样本也属于这个类别。

优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高。
适用数据范围:数值型和标称型。

Naive Bays(NB)

在众多分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Midel)和朴素贝叶斯(Native Bayesian Model,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是这个假设在实际应用中往往不成立的,这给NBC模型的正确分类带来一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

优点:在数据较少的情况下仍然有效,可以处理多类别问题。
缺点:对于输入数据的准备方式较为敏感。
适用数据类型:标称型数据。

CART:分类回归树

CART,Classification and Regression Trees.在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法(二元切分法);第二个想法是用验证数据进行剪枝(预剪枝、后剪枝)。在回归树的基础上的模型树构建难度可能增加了,但同时其分类效果也有提升。

优点:可以对复杂和非线性的数据建模。
缺点:结果不易理解。
适用数据类型:数值型和标称型数据。

参考文献&博客&书籍
《机器学习实战》
https://blog.csdn.net/qq_36523839/article/details/82383597
https://blog.csdn.net/JohnsonSmile/article/details/88359859

posted @ 2019-12-06 22:10  pgCai  阅读(382)  评论(0编辑  收藏  举报