0909案例实战:Python实现逻辑回归与梯度下降策略
根据成绩预测学生录取情况:
import numpy as np import pandas as pd import matplotlib.pyplot as plt import numpy.random from sklearn import preprocessing as pp # 数据标准化 import time %matplotlib inline #洗牌 def shuffleData(data): np.random.shuffle(data) cols = data.shape[1] X = data[:, 0:cols-1] y = data[:, cols-1:] return X, y # 定义停止方式 STOP_ITER = 0 STOP_COST = 1 STOP_GRAD = 2 def stopCriterion(type, value, threshold): #设定三种不同的停止策略 if type == STOP_ITER: return value > threshold elif type == STOP_COST: return abs(value[-1]-value[-2]) < threshold elif type == STOP_GRAD: return np.linalg.norm(value) < threshold # 定义函数 #设定阈值 预测 概率值转化为 类别值 def predict(X, theta): return [1 if x >= 0.5 else 0 for x in model(X, theta)] # 定义函数 def sigmoid(z): return 1 / (1 + np.exp(-z)) # 定义函数 def model(X, theta): """ Returns our model result :param X: examples to classify, n x p :param theta: parameters, 1 x p :return: the sigmoid evaluated for each examples in X given parameters theta as a n x 1 vector """ return sigmoid(np.dot(X, theta.T)) # 定义损失函数 def cost(X, y, theta): left = np.multiply(-y, np.log(model(X, theta))) right = np.multiply(1 - y, np.log(1 - model(X, theta))) return np.sum(left - right) / (len(X)) # 定义梯度下降函数 def gradient(X, y, theta): grad = np.zeros(theta.shape) error = (model(X, theta)- y).ravel() for j in range(len(theta.ravel())): #for each parmeter term = np.multiply(error, X[:,j]) grad[0, j] = np.sum(term) / len(X) return grad # 定义函数 def descent(data, theta, batchSize, stopType, thresh, alpha): #梯度下降求解 init_time = time.time() i = 0 # 迭代次数 k = 0 # batch X, y = shuffleData(data) grad = np.zeros(theta.shape) # 计算的梯度 costs = [cost(X, y, theta)] # 损失值 while True: grad = gradient(X[k:k+batchSize], y[k:k+batchSize], theta) k += batchSize #取batch数量个数据 if k >= n: k = 0 X, y = shuffleData(data) #重新洗牌 theta = theta - alpha*grad # 参数更新 costs.append(cost(X, y, theta)) # 计算新的损失 i += 1 if stopType == STOP_ITER: value = i elif stopType == STOP_COST: value = costs elif stopType == STOP_GRAD: value = grad if stopCriterion(stopType, value, thresh): break return theta, i-1, costs, grad, time.time() - init_time # 定义函数 def runExpe(data, theta, batchSize, stopType, thresh, alpha): #import pdb; pdb.set_trace(); theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha) name = "Original" if (data[:,1]>2).sum() > 1 else "Scaled" name += " data - learning rate: {} - ".format(alpha) if batchSize==n: strDescType = "Gradient" elif batchSize==1: strDescType = "Stochastic" else: strDescType = "Mini-batch ({})".format(batchSize) name += strDescType + " descent - Stop: " if stopType == STOP_ITER: strStop = "{} iterations".format(thresh) elif stopType == STOP_COST: strStop = "costs change < {}".format(thresh) else: strStop = "gradient norm < {}".format(thresh) name += strStop print ("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format( name, theta, iter, costs[-1], dur)) fig, ax = plt.subplots(figsize=(12,4)) ax.plot(np.arange(len(costs)), costs, 'r') ax.set_xlabel('Iterations') ax.set_ylabel('Cost') ax.set_title(name.upper() + ' - Error vs. Iteration') return theta #读取 数据 import os path = 'data' + os.sep + 'LogiReg_data.txt' pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted']) pdData.head() # 数据分布画图 positive = pdData[pdData['Admitted'] == 1] # returns the subset of rows such Admitted = 1, i.e. the set of *positive* examples negative = pdData[pdData['Admitted'] == 0] # returns the subset of rows such Admitted = 0, i.e. the set of *negative* examples fig, ax = plt.subplots(figsize=(10,5)) ax.scatter(positive['Exam 1'], positive['Exam 2'], s=30, c='b', marker='o', label='Admitted') ax.scatter(negative['Exam 1'], negative['Exam 2'], s=30, c='r', marker='x', label='Not Admitted') ax.legend() ax.set_xlabel('Exam 1 Score') ax.set_ylabel('Exam 2 Score') pdData.insert(0, 'Ones', 1) # in a try / except structure so as not to return an error if the block si executed several times # set X (training data) and y (target variable) orig_data = pdData.values# convert the Pandas representation of the data to an array useful for further computations cols = orig_data.shape[1] X = orig_data[:,0:cols-1] y = orig_data[:,cols-1:cols] # convert to numpy arrays and initalize the parameter array theta #X = np.matrix(X.values) #y = np.matrix(data.iloc[:,3:4].values) #np.array(y.values) theta = np.zeros([1, 3]) # 梯度下降求参数 n=100 # 1 设定迭代次数 runExpe(orig_data, theta, n, STOP_ITER, thresh=5000, alpha=0.000001) # 2 根据损失值停止 runExpe(orig_data, theta, n, STOP_COST, thresh=0.000001, alpha=0.001) # 3 根据梯度变化停止 runExpe(orig_data, theta, n, STOP_GRAD, thresh=0.05, alpha=0.001) # 4 对比不同的梯度下降方法 runExpe(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001) runExpe(orig_data, theta, 1, STOP_ITER, thresh=15000, alpha=0.000002) # 5 Mini-batch descent runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001) scaled_data = orig_data.copy() scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3]) runExpe(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001) runExpe(scaled_data, theta, n, STOP_GRAD, thresh=0.02, alpha=0.001) theta = runExpe(scaled_data, theta, 1, STOP_GRAD, thresh=0.002/5, alpha=0.001) # 预测 scaled_X = scaled_data[:, :3] y = scaled_data[:, 3] predictions = predict(scaled_X, theta) correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)] accuracy = (sum(map(int, correct)) % len(correct)) print ('accuracy = {0}%'.format(accuracy))