PyTorch程序练习(二):循环神经网络的PyTorch实现
一、RNN实现
结构原理
代码实现
import torch
import torch.nn as nn
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(input_size + hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden):
combined = torch.cat((input, hidden), 1)
hidden = self.i2h(combined) #全连接层
output: object = self.i2o(combined)
output = self.softmax(output)
return output, hidden
def initHidden(self):
return torch.zeros(1, self.hidden_size)
二、LSTM实现
结构原理
封装好的LSTM
import torch
import torch.nn as nn
class LSTMTagger(nn.Module):
def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size):
super(LSTMTagger, self).__init__()
self.hidden_dim = hidden_dim
self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)
# LSTM以word_embeddings作为输入, 输出维度为 hidden_dim 的隐藏状态值
self.lstm = nn.LSTM(embedding_dim, hidden_dim)
# 线性层将隐藏状态空间映射到标注空间
self.hidden2tag = nn.Linear(hidden_dim, tagset_size)
self.hidden = self.init_hidden()
def init_hidden(self):
# 一开始并没有隐藏状态所以要先初始化一个
# 各个维度的含义是 (num_layers, minibatch_size, hidden_dim)
return (torch.zeros(1, 1, self.hidden_dim),
torch.zeros(1, 1, self.hidden_dim))
def forward(self, sentence):
embeds = self.word_embeddings(sentence)
lstm_out, self.hidden = self.lstm(embeds.view(len(sentence), 1, -1), self.hidden)
tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))
tag_scores = F.log_softmax(tag_space, dim=1)
return tag_scores
未封装的LSTM
import torch
import torch.nn as nn
class LSTMCell(nn.Module):
def __init__(self, input_size, hidden_size, cell_size, output_size):
super(LSTMCell, self).__init__()
self.hidden_size = hidden_size
self.cell_size = cell_size
self.gate = nn.Linear(input_size + hidden_size, cell_size) # 门:线性全连接层
self.output = nn.Linear(hidden_size, output_size)
self.sigmoid = nn.Sigmoid()
self.tanh = nn.Tanh()
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden, cell):
combined = torch.cat((input, hidden), 1) #维度上连接
f_gate = self.sigmoid(self.gate(combined)) #遗忘门
i_gate = self.sigmoid(self.gate(combined)) #输入门
o_gate = self.sigmoid(self.gate(combined)) #输出门
z_state = self.tanh(self.gate(combined))
cell = torch.add(torch.mul(cell, f_gate), torch.mul(z_state, i_gate))
"""
cell长期记忆细胞:(cell·f_gate)+(z_state·i_gate)
遗忘门经过sigmoid后,值在[0,1]之间:
当f_gate趋于0时,和cell矩阵相乘后,记忆细胞为0,忘记长期记忆;
当f_gate区域1时,cell全部输入,作为长期记忆。
"""
hidden = torch.mul(self.tanh(cell), o_gate) #隐藏层:长期记忆细胞cell先过一层tanh激活函数,然后和输出门o_gate矩阵相乘
output = self.output(hidden) #隐藏层作为输出层的输出
output = self.softmax(output)
return output, hidden, cell
def initHidden(self):
return torch.zeros(1, self.hidden_size)
def initCell(self):
return torch.zeros(1, self.cell_size)
三、GRU实现
结构原理
代码实现
import torch
import torch.nn as nn
class GRUCell(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(GRUCell, self).__init__()
self.hidden_size = hidden_size
self.gate = nn.Linear(input_size + hidden_size, hidden_size)
self.output = nn.Linear(hidden_size, output_size)
self.sigmoid = nn.Sigmoid()
self.tanh = nn.Tanh()
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden):
combined = torch.cat((input, hidden), 1)
z_gate = self.sigmoid(self.gate(combined)) #重置门
r_gate = self.sigmoid(self.gate(combined)) #更新门
combined01 = torch.cat((input, torch.mul(hidden, r_gate)), 1)
h1_state = self.tanh(self.gate(combined01))
h_state = torch.add(torch.mul((1 - z_gate), hidden), torch.mul(h1_state, z_gate))
output = self.output(h_state)
output = self.softmax(output)
return output, h_state
def initHidden(self):
return torch.zeros(1, self.hidden_size)
四、程序分析
1、RNN(Recurrent Natural Network,循环神经网络)
PyTorch提供了两个版本的循环神经网络接口,单元版的输入是每个时间步,或循环神经网络的一个循环,而封装版的是一个序列。
2、LSTM(Long Short-TermMemory,长短时记忆网络)
LSTM是在RNN基础上增加了长时间记忆功能,具体通过增加一个状态C及利用3个门(Gate)实现对信息的更精准控制。
LSTM比标准的RNN多了3个线性变换,多出的3个线性变换的权重合在一起是RNN的4倍,偏移量也是RNN的4倍。所以,LSTM的参数个数是RNN的4倍。
除了参数的区别外,隐含状态除h0外,多了一个c0,两者形状相同,都是(num_layers*num_directions,batch,hidden_size),它们合在一起构成了LSTM的隐含状态。所以,LSTM的输入隐含状态为(h0,c0),输出的隐含状态为(hn,cn),其他输入与输出与RNN相同。
3、GRU(Gated Recurrent Unit,门控循环单元)
GRU网络结构与LSTM基本相同,主要区别是LSTM共有3个门,两个隐含状态;而GRU只有两个门,一个隐含状态。其参数是标准RNN的3倍。
很高兴本文对你有用(*^_^*),如需转载请记得标明出处哟(☆▽☆):
本文来自博客园,作者:香菜大魔法师,原文链接:https://www.cnblogs.com/corianderfiend/p/16583130.html