bzoj 4408 [Fjoi 2016]神秘数 主席树

题面

题目传送门

解法

假设现在有一个和\(S\),那么\(1-S\)中所有数都可以被表示

不断将\(S\)加上没有被加过且小于\(S\)的数

最坏情况为斐波那契数列的时候,但不超过\(log\sum a_i\)

用主席树查询即可

时间复杂度:\(O(q\ log\ n\ log\sum a_i)\)

代码

#include <bits/stdc++.h>
#define N 100010
using namespace std;
template <typename node> void read(node &x) {
	x = 0; int f = 1; char c = getchar();
	while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
	while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
struct Node {
	int lc, rc, cnt, sum;
} t[N * 40];
int tot, rt[N];
int ins(int k, int l, int r, int x) {
	int ret = ++tot; t[ret] = t[k];
	t[ret].cnt++, t[ret].sum += x;
	if (l == r) return ret; int mid = (l + r) >> 1;
	if (x <= mid) t[ret].lc = ins(t[k].lc, l, mid, x);
		else t[ret].rc = ins(t[k].rc, mid + 1, r, x);
	return ret;
}
int query(int k1, int k2, int l, int r, int x) {
	if (l == r) return t[k2].sum - t[k1].sum;
	int mid = (l + r) >> 1;
	if (x <= mid) return query(t[k1].lc, t[k2].lc, l, mid, x);
	return t[t[k2].lc].sum - t[t[k1].lc].sum + query(t[k1].rc, t[k2].rc, mid + 1, r, x);
}
int main() {
	int n; read(n);
	for (int i = 1; i <= n; i++) {
		int x; read(x);
		rt[i] = ins(rt[i - 1], 1, 1e9, x);
	}
	int q; read(q);
	while (q--) {
		int l, r, sum = 1; read(l), read(r);
		while (true) {
			int las = sum; sum = query(rt[l - 1], rt[r], 1, 1e9, sum) + 1;
			if (sum == las) break;
		}
		cout << sum << "\n";
	}
	return 0;
}

posted @ 2018-08-14 23:22  谜のNOIP  阅读(122)  评论(0编辑  收藏  举报