bzoj 2039 [2009国家集训队]employ人员雇佣 最小割建图
题面
解法
\(ans\) = 所有的收益 - \(i\)属于\(S\)割的(雇佣\(i\)的代价) - 不能同时雇佣\(i,j\)的带价(\(i\)属于\(S\)割,\(j\)属于T割) - 不雇佣\(i\)所造成的带价也就是\(i\)所有的贡献(\(i\)属于\(T\)割)
那么建图也就出来了:\(S\rightarrow i\)连\(a_i\),\(i\rightarrow j\)连\(E_{i,j}\),\(i\rightarrow T\)连\(i\)的所有贡献
答案就是所有的贡献和减去最小割。
注意要加当前弧优化
代码
#include <bits/stdc++.h>
#define N 2010
using namespace std;
template <typename node> void read(node &x) {
x = 0; int f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
struct Edge {
int next, num, c;
} e[N * N];
int s, t, cnt, a[N], sum[N], l[N], cur[N], v[N][N];
void add(int x, int y, int c) {
e[++cnt] = (Edge) {e[x].next, y, c};
e[x].next = cnt;
}
void Add(int x, int y, int c) {
add(x, y, c), add(y, x, 0);
}
bool bfs(int s) {
for (int i = 1; i <= t; i++) l[i] = -1;
queue <int> q; q.push(s);
while (!q.empty()) {
int x = q.front(); q.pop();
for (int p = e[x].next; p; p = e[p].next) {
int k = e[p].num, c = e[p].c;
if (c && l[k] == -1)
l[k] = l[x] + 1, q.push(k);
}
}
return l[t] != -1;
}
int dfs(int x, int lim) {
if (x == t) return lim;
int used = 0;
for (int p = cur[x]; p; p = e[p].next) {
int k = e[p].num, c = e[p].c;
if (l[k] == l[x] + 1 && c) {
int w = dfs(k, min(c, lim - used));
e[p].c -= w, e[p ^ 1].c += w;
if (e[p].c) cur[x] = p;
used += w;
if (used == lim) return used;
}
}
if (!used) l[x] = -1;
return used;
}
int dinic() {
int ret = 0;
while (bfs(s)) {
for (int i = s; i <= t; i++)
cur[i] = e[i].next;
ret += dfs(s, INT_MAX);
}
return ret;
}
int main() {
int n, ans = 0; read(n);
for (int i = 1; i <= n; i++) read(a[i]);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
read(v[i][j]), sum[i] += v[i][j], ans += v[i][j];
s = 0, t = cnt = n + 1;
if (cnt % 2 == 0) cnt++;
for (int i = 1; i <= n; i++)
Add(s, i, a[i]), Add(i, t, sum[i]);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
Add(i, j, v[i][j] * 2);
cout << ans - dinic() << "\n";
return 0;
}