bzoj 2561 最小生成树 最小割建图
题面
解法
应该是比较显然的最小割了吧
问题可以转化为,只使用边权\(<w\)的边,最少去掉几条边,使得\(x,y\)不连通
显然的最小割问题
最大生成树同理
最后答案为最小生成树的答案+最大生成树的答案
代码
#include <bits/stdc++.h>
#define N 20010
using namespace std;
template <typename node> void read(node &x) {
x = 0; int f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
struct Node {
int x, y, v;
bool operator < (const Node &a) const {
return v < a.v;
}
} a[N * 10];
struct Flow {
struct Edge {
int next, num, c;
} e[N * 41];
int n, s, t, cnt, l[N], cur[N];
void Clear(int tn, int x, int y) {
cnt = n = tn, s = x, t = y;
if (cnt % 2 == 0) cnt++;
for (int i = 1; i <= n; i++)
e[i].next = 0;
}
void add(int x, int y, int c) {
e[++cnt] = (Edge) {e[x].next, y, c};
e[x].next = cnt;
}
void Add(int x, int y, int c) {
add(x, y, c), add(y, x, 0);
}
void build(int m, int key, int tx) {
for (int i = 1; i <= m; i++) {
int x = a[i].x, y = a[i].y, v = a[i].v;
if (key == 1 && v >= tx) break;
if (key == 2 && v <= tx) continue;
Add(x, y, 1), Add(y, x, 1);
}
}
bool bfs(int s) {
for (int i = 1; i <= n; i++) l[i] = -1;
l[s] = 0; queue <int> q; q.push(s);
while (!q.empty()) {
int x = q.front(); q.pop();
for (int p = e[x].next; p; p = e[p].next) {
int k = e[p].num, c = e[p].c;
if (c && l[k] == -1)
l[k] = l[x] + 1, q.push(k);
}
}
return l[t] != -1;
}
int dfs(int x, int lim) {
if (x == t) return lim;
int used = 0;
for (int p = cur[x]; p; p = e[p].next) {
int k = e[p].num, c = e[p].c;
if (l[k] == l[x] + 1 && c) {
int w = dfs(k, min(c, lim - used));
e[p].c -= w, e[p ^ 1].c += w;
if (e[p].c) cur[x] = p;
used += w;
if (used == lim) return lim;
}
}
if (!used) l[x] = -1;
return used;
}
int dinic() {
int ret = 0;
while (bfs(s)) {
for (int i = 1; i <= n; i++)
cur[i] = e[i].next;
ret += dfs(s, INT_MAX);
}
return ret;
}
} sol;
int main() {
int n, m, ans = 0; read(n), read(m);
for (int i = 1; i <= m; i++)
read(a[i].x), read(a[i].y), read(a[i].v);
sort(a + 1, a + m + 1);
int x, y, v; read(x), read(y), read(v);
sol.Clear(n, x, y); sol.build(m, 1, v); ans += sol.dinic();
sol.Clear(n, x, y); sol.build(m, 2, v); ans += sol.dinic();
cout << ans << "\n";
return 0;
}