bzoj 2751 [HAOI2012]容易题(easy) 数学
题面
解法
考虑当所有数都没有限制的时候,答案为\(\sum\prod_{i=1}^na_i\)
考虑将式子拆开并且运用乘法分配律,答案显然为\((\frac{n(n+1)}{2})^m\)
有限制类似
注意去重
代码
#include <bits/stdc++.h>
#define Mod 1000000007
#define int long long
#define N 100010
using namespace std;
template <typename node> void read(node &x) {
x = 0; int f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
struct Node {
int x, y;
bool operator < (const Node &a) const {
if (x == a.x) return y < a.y;
return x < a.x;
}
} a[N];
int Pow(int x, int y) {
int ret = 1;
while (y) {
if (y & 1) ret = ret * x % Mod;
y >>= 1, x = x * x % Mod;
}
return ret;
}
main() {
int n, m, k; read(n), read(m), read(k);
for (int i = 1; i <= k; i++)
read(a[i].x), read(a[i].y);
sort(a + 1, a + k + 1);
int tot = 0, ans = 1, s = 1, sum = n * (n + 1) / 2 % Mod;
map <int, int> h;
for (int i = 1; i <= k; i++) {
if (a[i].x != a[i - 1].x)
tot++, ans = ans * s % Mod, s = sum, h.clear();
if (!h.count(a[i].y)) s = (s - a[i].y + Mod) % Mod, h[a[i].y] = 1;
}
ans = ans * s % Mod * Pow(sum, m - tot) % Mod;
cout << ans << "\n";
return 0;
}