bzoj 3110 [Zjoi2013]K大数查询 整体二分
题面
解法
树套树比较苟,考虑整体二分
因为要求第K大,那么我们在二分的时候把\(v\)大于\(mid\)的放在右边并修改
修改直接用线段树区间加区间求和即可
时间复杂度:\(O(m\ log^2\ n)\)
代码
#include <bits/stdc++.h>
#define int long long
#define N 50010
using namespace std;
template <typename node> void chkmax(node &x, node y) {x = max(x, y);}
template <typename node> void chkmin(node &x, node y) {x = min(x, y);}
template <typename node> void read(node &x) {
x = 0; int f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
struct Node {
int op, l, r, v, id;
} a[N], tx[N], ty[N];
struct SegmentTree {
struct Node {
int l, r, sum, del;
} t[N * 4];
void build(int k, int l, int r) {
t[k] = (Node) {l, r, 0, 0};
if (l == r) return;
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
}
void pushdown(int k) {
int x = t[k].del; t[k].del = 0;
int lc = k << 1, rc = k << 1 | 1;
t[lc].del += x, t[rc].del += x;
t[lc].sum += (t[lc].r - t[lc].l + 1) * x;
t[rc].sum += (t[rc].r - t[rc].l + 1) * x;
}
void modify(int k, int L, int R, int v) {
int l = t[k].l, r = t[k].r;
if (L <= l && r <= R) {
t[k].del += v, t[k].sum += (r - l + 1) * v;
return;
}
if (t[k].del) pushdown(k);
int mid = (l + r) >> 1;
if (L <= mid && mid < R)
modify(k << 1, L, mid, v), modify(k << 1 | 1, mid + 1, R, v);
if (R <= mid) modify(k << 1, L, R, v);
if (L > mid) modify(k << 1 | 1, L, R, v);
t[k].sum = t[k << 1].sum + t[k << 1 | 1].sum;
}
int query(int k, int L, int R) {
int l = t[k].l, r = t[k].r;
if (L <= l && r <= R) return t[k].sum;
if (t[k].del) pushdown(k);
int mid = (l + r) >> 1;
if (R <= mid) return query(k << 1, L, R);
if (L > mid) return query(k << 1 | 1, L, R);
return query(k << 1, L, mid) + query(k << 1 | 1, mid + 1, R);
}
} T;
int ans[N];
void solve(int l, int r, int L, int R) {
if (l > r) return;
if (L == R) {
for (int i = l; i <= r; i++)
if (a[i].op == 2) ans[a[i].id] = L;
return;
}
int mid = (L + R) >> 1, fx = 0, fy = 0, lx = 0, ly = 0;
for (int i = l; i <= r; i++)
if (a[i].op == 1) {
if (a[i].v > mid) T.modify(1, a[i].l, a[i].r, 1), ty[++ly] = a[i];
else tx[++lx] = a[i];
} else {
int tmp = T.query(1, a[i].l, a[i].r);
if (a[i].v > tmp) a[i].v -= tmp, tx[++lx] = a[i], fx = 1;
else ty[++ly] = a[i], fy = 1;
}
for (int i = l; i <= r; i++)
if (a[i].op == 1 && a[i].v > mid) T.modify(1, a[i].l, a[i].r, -1);
for (int i = 1; i <= lx; i++) a[i + l - 1] = tx[i];
for (int i = 1; i <= ly; i++) a[i + l + lx - 1] = ty[i];
if (fx) solve(l, l + lx - 1, L, mid);
if (fy) solve(l + lx, r, mid + 1, R);
}
main() {
int n, m, q = 0; read(n), read(m);
for (int i = 1; i <= m; i++) {
read(a[i].op), read(a[i].l), read(a[i].r), read(a[i].v);
if (a[i].op == 2) a[i].id = ++q;
}
T.build(1, 1, n), solve(1, m, 1, n);
for (int i = 1; i <= q; i++) cout << ans[i] << "\n";
return 0;
}