bzoj 2216 [Poi2011]Lightning Conductor 决策单调性+dp

题面

题目传送门

解法

决策单调性比较经典的题吧

题目就是要对于每一个\(i\)\(f_i=max(a_j-a_i+\sqrt{|i-j|}))\)

可以发现,\(\sqrt n\)的增长速度比较慢,所以满足决策单调性

决策单调性是指,如果决策\(j\)对于\(i\)已经不是最优的了,那么在后面也一定不是最优的

我们可以对于每一个\(i\)记录它是由哪一个决策\(j\)转移而来的

可以发现,只要出现在决策表中的数一定构成若干段区间

那么,我们只要开一个队列,记录每一个决策的转移区间即可

假设当前队尾为决策\(p\),对应最优区间为\([l,r]\)

如果在\(l\)这个位置发现\(i\)\(p\)优,那么直接把\(p\)删掉

如果在\(r\)这个位置发现\(i\)没有\(p\)优,那么就可以不用管了

否则,二分中间的断点,更新区间

用一个双端队列来实现这个过程

注意:本题需要考虑上取整等操作,所以在转移的时候不要把double转成int,否则会影响结果

时间复杂度:\(O(n\ log\ n)\)

代码

#include <bits/stdc++.h>
#define N 500010
using namespace std;
template <typename node> void chkmax(node &x, node y) {x = max(x, y);}
template <typename node> void chkmin(node &x, node y) {x = min(x, y);}
template <typename node> void read(node &x) {
	x = 0; int f = 1; char c = getchar();
	while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
	while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
struct Node {
	int p, l, r;
} q[N];
int a[N], f[N], g[N];
double calc(int x, int y) {
	return (double)a[y] + sqrt(abs(y - x));
}
int solve(int pos, int L, int R, int i) {
	int l = L, r = R, ans = -1;
	while (l <= r) {
		int mid = (l + r) >> 1;
		if (calc(mid, pos) <= calc(mid, i)) r = mid - 1, ans = mid;
			else l = mid + 1;
	}
	return ans;
}
int main() {
	int n; read(n);
	for (int i = 1; i <= n; i++) read(a[i]);
	int h = 1, t = 0;
	for (int i = 1; i <= n; i++) {
		q[h].l++;
		while (h <= t && q[h].r < q[h].l) h++;
		if (h > t || calc(n, q[t].p) < calc(n, i)) {
			while (h <= t && calc(q[t].l, q[t].p) < calc(q[t].l, i)) t--;
			if (h <= t) {
				int x = solve(q[t].p, q[t].l, q[t].r, i);
				q[t].r = x - 1;
				q[++t] = (Node) {i, x, n};
			} else q[++t] = (Node) {i, i, n};
		}
		f[i] = ceil(calc(i, q[h].p) - a[i]);
 	}
	reverse(a + 1, a + n + 1);
	memset(q, 0, sizeof(q));
	h = 1, t = 0;
	for (int i = 1; i <= n; i++) {
		q[h].l++;
		while (h <= t && q[h].r < q[h].l) h++;
		if (h > t || calc(n, q[t].p) < calc(n, i)) {
			while (h <= t && calc(q[t].l, q[t].p) < calc(q[t].l, i)) t--;
			if (h <= t) {
				int x = solve(q[t].p, q[t].l, q[t].r, i);
				q[t].r = x - 1;
				q[++t] = (Node) {i, x, n};
			} else q[++t] = (Node) {i, i, n};
		}
		g[i] = ceil(calc(i, q[h].p) - a[i]);
 	}
	for (int i = 1; i <= n; i++) cout << max(0, max(f[i], g[n - i + 1])) << "\n";
	return 0;
}

posted @ 2018-08-14 22:10  谜のNOIP  阅读(116)  评论(0编辑  收藏  举报