bzoj 4503 两个串 FFT

题面

题目传送门

解法

挺妙的一道题,思路比较精妙

带通配符之后好像字符串算法就不太好匹配了啊

设通配符的值为0,那么这两个字符相同当且仅当有一个是通配符或者就是相同的

\(dis(A,B)=\sum_{i=0}^{n-1}(A_i-B_i)^2A_iB_i\)

其中,若\(A_i=?\),那么\(A_i=0\)

如果\(dis(A,B)=0\),那么显然这两个字符串是匹配的

\(p_i\)表示\(B\)\(i\)结尾的字符串和\(A\)的匹配情况

翻转A串,然后可以得出以下式子:

\[p_i=\sum_{j=0}^{n-1}A_j^3B_{i-j}-2\sum_{j=0}^{n-1}A_j^2B_{i-j}^2+\sum_{j=0}^{n-1}A_jB_{i-j}^3$ 显然,这是一个卷积的形式,可以FFT 分三次FFT即可 时间复杂度:$O(n\ log \ n)$ ~~常数巨大~~ ### 代码 ```cpp #include <bits/stdc++.h> #define N 1 << 21 using namespace std; template <typename node> void chkmax(node &x, node y) {x = max(x, y);} template <typename node> void chkmin(node &x, node y) {x = min(x, y);} template <typename node> void read(node &x) { x = 0; int f = 1; char c = getchar(); while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();} while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f; } struct Complex { double x, y; Complex (double tx = 0, double ty = 0) {x = tx, y = ty;} } a[N], b[N], c[N]; const double pi = acos(-1); int n, m, A[N], B[N], ans[N], rev[N]; Complex operator + (Complex a, Complex b) {return (Complex) {a.x + b.x, a.y + b.y};} Complex operator - (Complex a, Complex b) {return (Complex) {a.x - b.x, a.y - b.y};} Complex operator * (Complex a, Complex b) {return (Complex) {a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x};} Complex operator * (Complex a, double b) {return (Complex) {a.x * b, a.y * b};} string tx, ty; void getrev(int l) { for (int i = 0; i < (1 << l); i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << l - 1); } void FFT(Complex *a, int n, int key) { for (int i = 0; i < n; i++) if (i < rev[i]) swap(a[i], a[rev[i]]); for (int i = 1; i < n; i <<= 1) { Complex wn(cos(pi / i), key * sin(pi / i)); for (int r = i << 1, j = 0; j < n; j += r) { Complex w(1, 0); for (int k = 0; k < i; k++, w = w * wn) { Complex x = a[j + k], y = w * a[i + j + k]; a[j + k] = x + y, a[i + j + k] = x - y; } } } if (key == -1) for (int i = 0; i < n; i++) a[i].x /= n; } int main() { cin >> tx >> ty; int m = tx.size(), n = ty.size(); for (int i = 0; i < n; i++) if (ty[i] != '?') A[i] = ty[i] - 'a' + 1; for (int i = 0; i < m; i++) if (tx[i] != '?') B[i] = tx[i] - 'a' + 1; int len = 1, l = 0; while (len <= 2 * m) len <<= 1, l++; getrev(l); reverse(A, A + n); for (int i = 0; i < len; i++) a[i] = (Complex) {A[i] * A[i] * A[i], 0}; for (int i = 0; i < len; i++) b[i] = (Complex) {B[i], 0}; FFT(a, len, 1), FFT(b, len, 1); for (int i = 0; i < len; i++) c[i] = c[i] + (a[i] * b[i]); for (int i = 0; i < len; i++) a[i] = (Complex) {A[i] * A[i], 0}; for (int i = 0; i < len; i++) b[i] = (Complex) {B[i] * B[i], 0}; FFT(a, len, 1), FFT(b, len, 1); for (int i = 0; i < len; i++) c[i] = c[i] - (a[i] * b[i] * 2.0); for (int i = 0; i < len; i++) a[i] = (Complex) {A[i], 0}; for (int i = 0; i < len; i++) b[i] = (Complex) {B[i] * B[i] * B[i], 0}; FFT(a, len, 1), FFT(b, len, 1); for (int i = 0; i < len; i++) c[i] = c[i] + (a[i] * b[i]); FFT(c, len, -1); int tot = 0; for (int i = n - 1; i < m; i++) if (fabs(c[i].x) < 0.5) ans[++tot] = i - n + 1; cout << tot << "\n"; for (int i = 1; i <= tot; i++) cout << ans[i] << ' '; return 0; } ```\]

posted @ 2018-08-14 18:56  谜のNOIP  阅读(101)  评论(0编辑  收藏  举报