loj 1038
imi learned a new thing about integers, which is - any positive integer greater than 1 can be divided by its divisors. So, he is now playing with this property. He selects a number N. And he calls this D.
In each turn he randomly chooses a divisor of D (1 to D). Then he divides D by the number to obtain new D. He repeats this procedure until D becomes 1. What is the expected number of moves required for N to become 1.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case begins with an integer N (1 ≤ N ≤ 105).
Output
For each case of input you have to print the case number and the expected value. Errors less than 10-6 will be ignored.
Sample Input
3
1
2
50
Sample Output
Case 1: 0
Case 2: 2.00
Case 3: 3.0333333333
网上的题解都是错的,结果一群人再抄,笑死我了
设一个数的约数有num个,E[n] = (E[a[1]]+1)/num+(E[a[2]]+1)/num+...+(E[a[num]]+1)/num ,而a[num]==n,于是整理得:
E[n]=(E[a[1]]+E[a[2]]+...+E[a[num-1]]+num)/(num-1)。
网上这个式子多了个+1,一群人抄的很起劲,笑死我了
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; int n; double dp[111111]; void Get_Dp() { dp[1]=0; for(int i=2;i<=100000;i++){ int cnt=0; double sum=0; for(int j=1;j*j<=i;j++){ if(i%j==0){ cnt++; sum+=dp[j]; if(j*j!=i){ cnt++; sum+=dp[i/j]; } } } dp[i]=(sum+cnt)/(cnt-1); } } int main() { Get_Dp(); int _case,t=1; scanf("%d",&_case); while(_case--){ scanf("%d",&n); printf("Case %d: %.10f\n",t++,dp[n]); } return 0; }