poj 2337

A catenym is a pair of words separated by a period such that the last letter of the first word is the same as the last letter of the second. For example, the following are catenyms:
dog.gopher

gopher.rat
rat.tiger
aloha.aloha
arachnid.dog

A compound catenym is a sequence of three or more words separated by periods such that each adjacent pair of words forms a catenym. For example,

aloha.aloha.arachnid.dog.gopher.rat.tiger

Given a dictionary of lower case words, you are to find a compound catenym that contains each of the words exactly once.

Input

The first line of standard input contains t, the number of test cases. Each test case begins with 3 <= n <= 1000 - the number of words in the dictionary. n distinct dictionary words follow; each word is a string of between 1 and 20 lowercase letters on a line by itself.

Output

For each test case, output a line giving the lexicographically least compound catenym that contains each dictionary word exactly once. Output "***" if there is no solution.

Sample Input

2
6
aloha
arachnid
dog
gopher
rat
tiger
3
oak
maple
elm

Sample Output

aloha.arachnid.dog.gopher.rat.tiger
***

这道题本人使用了kuangbin的代码,注意,这道题是深入理解欧拉路径怎么求
在前面一道题(poj2230)中,我们在求欧拉“回路”时利用了记录节点的方式,这是因为欧拉回路保证每一次遍历节点的时候,如果成环,也一定能回来,但是这里不能记录节点
因为一旦我们记录节点,如果这条欧拉通路中有环,不能保证我们能按顺序dfs出来,而且这道题最恶心的地方是字典序,所以我一开始想的是用邻接表存图,然后对每个顺序开头的字母进行排序
但是这样同样出现了“一旦成环”的问题,这也是欧拉回路与欧拉路径的最大区别,所以显然,欧拉回路简单的多,但是欧拉路径就难了一个层级,kuangbin用了前向星,为什么会用这个东西,
后来我理解了一下,就是为了“字典序”,字典序必须对每一个单词都要排一遍,同时前向星能够保证不出现我们这种“成环”的问题。
同时,注意我们判断欧拉路径的时候,必须保证这个图是连通的,这里kuangbin非常巧妙地在dfs函数中记录了边的条数,一旦边不等于输入,一定不连通,真的巧妙,哎哎哎啊,本人还有很长一段路要走。
先贴我的错误代码,如果有人能用邻接表做的话能够评论指正,我是记录了节点,现在看来,这种存图方式应该肯定不能适用于这一类问题。
//coolwx的错误代码
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <string>
#include <cstring>
using namespace std;
int n;
vector<string> record;
struct node{
      int to;
      string cost;
      bool ok;
      node(int x,string y,bool z);
};
node::node(int x,string y,bool z){
    to=x;
    cost=y;
    ok=z;
}
bool vis[27];
pair<int,int> dushu[27];
vector<node> alphabet[27];
void dfs(int u)
{
    for(int i=0;i<alphabet[u].size();i++)
    {
        if(alphabet[u][i].ok==false)
        {    
            record.push_back(alphabet[u][i].cost);
            alphabet[u][i].ok=true;
            dfs(alphabet[u][i].to);
            
        }
    }    
    
}
bool cmp(node a,node b)
{
    return a.cost<b.cost;
}
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        record.clear();
        for(int i=0;i<26;i++)
        {
            alphabet[i].clear();
            dushu[i]=make_pair(0,0);
            vis[i]=false;
        }
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            string x;
            cin>>x; 
            int start=x[0]-'a';
            int end=x[x.length()-1]-'a';
            vis[start]=true;
            vis[end]=true;
            alphabet[start].push_back(node(end,x,false));
            dushu[start].first+=1;
            dushu[end].second+=1;
        }
        int nn=0;
        for(int i=0;i<26;i++)
        {
            if(vis[i])
            nn++;
        }
        int flag=0;
        int ssum=0;
        int estart=100,eend=100;
        for(int i=0;i<26;i++)
        {
            if(dushu[i].first==0&&dushu[i].second==0)
            continue;
            if(dushu[i].first-dushu[i].second==1)
            estart=i;
            else if(dushu[i].second-dushu[i].first==1)
            eend=i;
            else if(dushu[i].first==dushu[i].second)
            ssum++;
            else
            {
                break;
            }
        }
        if(ssum==nn||ssum==nn-2)
        flag=1;
        if(flag==0)
        {
            printf("***\n");
            continue;
        }
        else
        {
            for(int i=0;i<26;i++)
            {
                sort(alphabet[i].begin(),alphabet[i].end(),cmp);
            }
            if(eend!=100&&estart!=100)
            {
                dfs(estart);
            }
            else
            {
                for(int i=0;i<26;i++)
                {
                    if(alphabet[i].size()!=0)
                    {
                        dfs(i);
                        break;
                    }
                }
            }
            if(record.size()!=n)
            {printf("***\n");
            continue;
            }
            else
            for(int i=0;i<record.size()-1;i++)
            {
                cout<<record[i]<<'.';
            }
            cout<<record[record.size()-1]<<'\n';
        }
    }
}

再贴kuangbin的正解,网上大多数都是使用了前向星的做法,今天也算理解了一遍。

/* ***********************************************
Author        :kuangbin
Created Time  :2014-2-3 13:12:43
File Name     :E:\2014ACM\专题学习\图论\欧拉路\有向图\POJ2337.cpp
************************************************ */

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
struct Edge
{
    int to,next;
    int index;
    bool flag;
}edge[2010];
int head[30],tot;
void init()
{
    tot = 0;
    memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int index)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    edge[tot].index = index;
    edge[tot].flag = false;
    head[u] = tot++;
}
string str[1010];
int in[30],out[30];
int cnt;
int ans[1010];
void dfs(int u)
{
    for(int i = head[u] ;i != -1;i = edge[i].next)
        if(!edge[i].flag)
        {
            edge[i].flag = true;
            dfs(edge[i].to);
            ans[cnt++] = edge[i].index;
        }
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int T,n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i = 0;i < n;i++)
            cin>>str[i];
        sort(str,str+n);//要输出字典序最小的解,先按照字典序排序
        init();
        memset(in,0,sizeof(in));
        memset(out,0,sizeof(out));
        int start = 100;
        for(int i = n-1;i >= 0;i--)//字典序大的先加入
        {
            int u = str[i][0] - 'a';
            int v = str[i][str[i].length() - 1] - 'a';
            addedge(u,v,i);
            out[u]++;
            in[v]++;
            if(u < start)start = u;
            if(v < start)start = v;
        }
        int cc1 = 0, cc2 = 0;
        for(int i = 0;i < 26;i++)
        {
            if(out[i] - in[i] == 1)
            {
                cc1++;
                start = i;//如果有一个出度比入度大1的点,就从这个点出发,否则从最小的点出发
            }
            else if(out[i] - in[i] == -1)
                cc2++;
            else if(out[i] - in[i] != 0)
                cc1 = 3;
        }
        if(! ( (cc1 == 0 && cc2 == 0) || (cc1 == 1 && cc2 == 1) ))
        {
            printf("***\n");
            continue;
        }
        cnt = 0;
        dfs(start);
        if(cnt != n)//判断是否连通
        {
            printf("***\n");
            continue;
        }
        for(int i = cnt-1; i >= 0;i--)
        {
            cout<<str[ans[i]];
            if(i > 0)printf(".");
            else printf("\n");
        }
    }
    return 0;
}

 



posted @ 2019-07-13 16:50  coolwx  阅读(195)  评论(0编辑  收藏  举报