乔克叔叔的博客,公众号:运维开发故事

为你的应用加上skywalking(链路监控)

skywalking是什么?为什么要给你的应用加上skywalking?


在介绍skywalking之前,我们先来了解一个东西,那就是APM(Application Performance Management)系统。

一、什么是APM系统

APM (Application Performance Management) 即应用性能管理系统,是对企业系统即时监控以实现
对应用程序性能管理和故障管理的系统化的解决方案。应用性能管理,主要指对企业的关键业务应用进
行监测、优化,提高企业应用的可靠性和质量,保证用户得到良好的服务,降低IT总拥有成本。
APM系统是可以帮助理解系统行为、用于分析性能问题的工具,以便发生故障的时候,能够快速定位和
解决问题。

说白了就是随着微服务的的兴起,传统的单体应用拆分为不同功能的小应用,用户的一次请求会经过多个系统,不同服务之间的调用非常复杂,其中任何一个系统出错都可能影响整个请求的处理结果。为了解决这个问题,Google 推出了一个分布式链路跟踪系统 Dapper ,之后各个互联网公司都参照Dapper 的思想推出了自己的分布式链路跟踪系统,而这些系统就是分布式系统下的APM系统。

目前市面上的APM系统有很多,比如skywalking、pinpoint、zipkin等。其中

  • Zipkin:由Twitter公司开源,开放源代码分布式的跟踪系统,用于收集服务的定时数据,以解决微服务架构中的延迟问题,包括:数据的收集、存储、查找和展现。
  • Pinpoint:一款对Java编写的大规模分布式系统的APM工具,由韩国人开源的分布式跟踪组件。
  • Skywalking:国产的优秀APM组件,是一个对JAVA分布式应用程序集群的业务运行情况进行追踪、告警和分析的系统。

二、什么是skywalking

SkyWalking是apache基金会下面的一个开源APM项目,为微服务架构和云原生架构系统设计。它通过探针自动收集所需的标,并进行分布式追踪。通过这些调用链路以及指标,Skywalking APM会感知应用间关系和服务间关系,并进行相应的指标统计。Skywalking支持链路追踪和监控应用组件基本涵盖主流框架和容器,如国产RPC Dubbo和motan等,国际化的spring boot,spring cloud。官方网站:http://skywalking.apache.org/


Skywalking的具有以下几个特点:

  1. 多语言自动探针,Java,.NET Core和Node.JS。
  2. 多种监控手段,语言探针和service mesh。
  3. 轻量高效。不需要额外搭建大数据平台。
  4. 模块化架构。UI、存储、集群管理多种机制可选。
  5. 支持告警。
  6. 优秀的可视化效果。

Skywalking整体架构如下:


整体架构包含如下三个组成部分:
1. 探针(agent)负责进行数据的收集,包含了Tracing和Metrics的数据,agent会被安装到服务所在的服务器上,以方便数据的获取。
2. 可观测性分析平台OAP(Observability Analysis Platform),接收探针发送的数据,并在内存中使用分析引擎(Analysis Core)进行数据的整合运算,然后将数据存储到对应的存储介质上,比如Elasticsearch、MySQL数据库、H2数据库等。同时OAP还使用查询引擎(Query Core)提供HTTP查询接口。
3. Skywalking提供单独的UI进行数据的查看,此时UI会调用OAP提供的接口,获取对应的数据然后进行展示。

三、搭建并使用

搭建其实很简单,官方有提供搭建案例。


上文提到skywalking的后端数据存储的介质可以是Elasticsearch、MySQL数据库、H2数据库等,我这里使用Elasticsearch作为数据存储,而且为了便与扩展和收集其他应用日志,我将单独搭建Elasticsearch。

3.1、搭建elasticsearch

为了增加es的扩展性,按角色功能分为master节点、data数据节点、client客户端节点。其整体架构如下:
image.png
其中:

  • Elasticsearch数据节点Pods被部署为一个有状态集(StatefulSet)
  • Elasticsearch master节点Pods被部署为一个Deployment
  • Elasticsearch客户端节点Pods是以Deployment的形式部署的,其内部服务将允许访问R/W请求的数据节点
  • Kibana部署为Deployment,其服务可在Kubernetes集群外部访问


(1)先创建estatic的命名空间(es-ns.yaml):

apiVersion: v1
kind: Namespace
metadata:
  name: elastic

执行kubectl apply -f es-ns.yaml


(2)部署es master
配置清单如下(es-master.yaml):

---
apiVersion: v1
kind: ConfigMap
metadata:
  namespace: elastic
  name: elasticsearch-master-config
  labels:
    app: elasticsearch
    role: master
data:
  elasticsearch.yml: |-
    cluster.name: ${CLUSTER_NAME}
    node.name: ${NODE_NAME}
    discovery.seed_hosts: ${NODE_LIST}
    cluster.initial_master_nodes: ${MASTER_NODES}

    network.host: 0.0.0.0

    node:
      master: true
      data: false
      ingest: false

    xpack.security.enabled: true
    xpack.monitoring.collection.enabled: true
---
apiVersion: v1
kind: Service
metadata:
  namespace: elastic
  name: elasticsearch-master
  labels:
    app: elasticsearch
    role: master
spec:
  ports:
  - port: 9300
    name: transport
  selector:
    app: elasticsearch
    role: master
---
apiVersion: apps/v1
kind: Deployment
metadata:
  namespace: elastic
  name: elasticsearch-master
  labels:
    app: elasticsearch
    role: master
spec:
  replicas: 1
  selector:
    matchLabels:
      app: elasticsearch
      role: master
  template:
    metadata:
      labels:
        app: elasticsearch
        role: master
    spec:
    	initContainers:
      - name: init-sysctl
        image: busybox:1.27.2
        command:
        - sysctl
        - -w
        - vm.max_map_count=262144
        securityContext:
          privileged: true
      containers:
      - name: elasticsearch-master
        image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
        env:
        - name: CLUSTER_NAME
          value: elasticsearch
        - name: NODE_NAME
          value: elasticsearch-master
        - name: NODE_LIST
          value: elasticsearch-master,elasticsearch-data,elasticsearch-client
        - name: MASTER_NODES
          value: elasticsearch-master
        - name: "ES_JAVA_OPTS"
          value: "-Xms512m -Xmx512m"
        ports:
        - containerPort: 9300
          name: transport
        volumeMounts:
        - name: config
          mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
          readOnly: true
          subPath: elasticsearch.yml
        - name: storage
          mountPath: /data
      volumes:
      - name: config
        configMap:
          name: elasticsearch-master-config
      - name: "storage"
        emptyDir:
          medium: ""
---

然后执行kubectl apply -f ``es-master.yaml创建配置清单,然后pod变为running状态即为部署成功。

# kubectl get pod -n elastic
NAME                                    READY   STATUS    RESTARTS   AGE
elasticsearch-master-77d5d6c9db-xt5kq   1/1     Running   0          67s


(3)部署es data
配置清单如下(es-data.yaml):

---
apiVersion: v1
kind: ConfigMap
metadata:
  namespace: elastic
  name: elasticsearch-data-config
  labels:
    app: elasticsearch
    role: data
data:
  elasticsearch.yml: |-
    cluster.name: ${CLUSTER_NAME}
    node.name: ${NODE_NAME}
    discovery.seed_hosts: ${NODE_LIST}
    cluster.initial_master_nodes: ${MASTER_NODES}

    network.host: 0.0.0.0

    node:
      master: false
      data: true
      ingest: false

    xpack.security.enabled: true
    xpack.monitoring.collection.enabled: true
---
apiVersion: v1
kind: Service
metadata:
  namespace: elastic
  name: elasticsearch-data
  labels:
    app: elasticsearch
    role: data
spec:
  ports:
  - port: 9300
    name: transport
  selector:
    app: elasticsearch
    role: data
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
  namespace: elastic
  name: elasticsearch-data
  labels:
    app: elasticsearch
    role: data
spec:
  serviceName: "elasticsearch-data"
  selector:
    matchLabels:
      app: elasticsearch
      role: data
  template:
    metadata:
      labels:
        app: elasticsearch
        role: data
    spec:
      initContainers:
      - name: init-sysctl
        image: busybox:1.27.2
        command:
        - sysctl
        - -w
        - vm.max_map_count=262144
        securityContext:
          privileged: true
      containers:
      - name: elasticsearch-data
        image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
        env:
        - name: CLUSTER_NAME
          value: elasticsearch
        - name: NODE_NAME
          value: elasticsearch-data
        - name: NODE_LIST
          value: elasticsearch-master,elasticsearch-data,elasticsearch-client
        - name: MASTER_NODES
          value: elasticsearch-master
        - name: "ES_JAVA_OPTS"
          value: "-Xms1024m -Xmx1024m"
        ports:
        - containerPort: 9300
          name: transport
        volumeMounts:
        - name: config
          mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
          readOnly: true
          subPath: elasticsearch.yml
        - name: elasticsearch-data-persistent-storage
          mountPath: /data/db
      volumes:
      - name: config
        configMap:
          name: elasticsearch-data-config
  volumeClaimTemplates:
  - metadata:
      name: elasticsearch-data-persistent-storage
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: managed-nfs-storage
      resources:
        requests:
          storage: 20Gi
---

执行kubectl apply -f es-data.yaml创建配置清单,其状态变为running即为部署成功。

# kubectl get pod -n elastic
NAME                                    READY   STATUS    RESTARTS   AGE
elasticsearch-data-0                    1/1     Running   0          4s
elasticsearch-master-77d5d6c9db-gklgd   1/1     Running   0          2m35s
elasticsearch-master-77d5d6c9db-gvhcb   1/1     Running   0          2m35s
elasticsearch-master-77d5d6c9db-pflz6   1/1     Running   0          2m35s

(4)部署es client
配置清单如下(es-client.yaml):

---
apiVersion: v1
kind: ConfigMap
metadata:
  namespace: elastic
  name: elasticsearch-client-config
  labels:
    app: elasticsearch
    role: client
data:
  elasticsearch.yml: |-
    cluster.name: ${CLUSTER_NAME}
    node.name: ${NODE_NAME}
    discovery.seed_hosts: ${NODE_LIST}
    cluster.initial_master_nodes: ${MASTER_NODES}

    network.host: 0.0.0.0

    node:
      master: false
      data: false
      ingest: true

    xpack.security.enabled: true
    xpack.monitoring.collection.enabled: true
---
apiVersion: v1
kind: Service
metadata:
  namespace: elastic
  name: elasticsearch-client
  labels:
    app: elasticsearch
    role: client
spec:
  ports:
  - port: 9200
    name: client
  - port: 9300
    name: transport
  selector:
    app: elasticsearch
    role: client
---
apiVersion: apps/v1
kind: Deployment
metadata:
  namespace: elastic
  name: elasticsearch-client
  labels:
    app: elasticsearch
    role: client
spec:
  selector:
    matchLabels:
      app: elasticsearch
      role: client
  template:
    metadata:
      labels:
        app: elasticsearch
        role: client
    spec:
      initContainers:
      - name: init-sysctl
        image: busybox:1.27.2
        command:
        - sysctl
        - -w
        - vm.max_map_count=262144
        securityContext:
          privileged: true
      containers:
      - name: elasticsearch-client
        image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
        env:
        - name: CLUSTER_NAME
          value: elasticsearch
        - name: NODE_NAME
          value: elasticsearch-client
        - name: NODE_LIST
          value: elasticsearch-master,elasticsearch-data,elasticsearch-client
        - name: MASTER_NODES
          value: elasticsearch-master
        - name: "ES_JAVA_OPTS"
          value: "-Xms256m -Xmx256m"
        ports:
        - containerPort: 9200
          name: client
        - containerPort: 9300
          name: transport
        volumeMounts:
        - name: config
          mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
          readOnly: true
          subPath: elasticsearch.yml
        - name: storage
          mountPath: /data
      volumes:
      - name: config
        configMap:
          name: elasticsearch-client-config
      - name: "storage"
        emptyDir:
          medium: ""

执行kubectl apply -f es-client.yaml创建配置清单,其状态变为running即为部署成功。

# kubectl get pod -n elastic
NAME                                    READY   STATUS    RESTARTS   AGE
elasticsearch-client-f79cf4f7b-pbz9d    1/1     Running   0          5s
elasticsearch-data-0                    1/1     Running   0          3m11s
elasticsearch-master-77d5d6c9db-gklgd   1/1     Running   0          5m42s
elasticsearch-master-77d5d6c9db-gvhcb   1/1     Running   0          5m42s
elasticsearch-master-77d5d6c9db-pflz6   1/1     Running   0          5m42s

(5)生成密码
我们启用了 xpack 安全模块来保护我们的集群,所以我们需要一个初始化的密码。我们可以执行如下所示的命令,在客户端节点容器内运行 bin/elasticsearch-setup-passwords 命令来生成默认的用户名和密码:

# kubectl exec $(kubectl get pods -n elastic | grep elasticsearch-client | sed -n 1p | awk '{print $1}') \
     -n elastic \
     -- bin/elasticsearch-setup-passwords auto -b

Changed password for user apm_system
PASSWORD apm_system = QNSdaanAQ5fvGMrjgYnM

Changed password for user kibana_system
PASSWORD kibana_system = UFPiUj0PhFMCmFKvuJuc

Changed password for user kibana
PASSWORD kibana = UFPiUj0PhFMCmFKvuJuc

Changed password for user logstash_system
PASSWORD logstash_system = Nqes3CCxYFPRLlNsuffE

Changed password for user beats_system
PASSWORD beats_system = Eyssj5NHevFjycfUsPnT

Changed password for user remote_monitoring_user
PASSWORD remote_monitoring_user = 7Po4RLQQZ94fp7F31ioR

Changed password for user elastic
PASSWORD elastic = n816QscHORFQMQWQfs4U

注意需要将 elastic 用户名和密码也添加到 Kubernetes 的 Secret 对象中:

kubectl create secret generic elasticsearch-pw-elastic \
     -n elastic \
     --from-literal password=n816QscHORFQMQWQfs4U

(6)、验证集群状态

kubectl exec -n elastic  \
        $(kubectl get pods -n elastic | grep elasticsearch-client | sed -n 1p | awk '{print $1}') \
        -- curl -u elastic:n816QscHORFQMQWQfs4U http://elasticsearch-client.elastic:9200/_cluster/health?pretty

{
  "cluster_name" : "elasticsearch",
  "status" : "green",
  "timed_out" : false,
  "number_of_nodes" : 3,
  "number_of_data_nodes" : 1,
  "active_primary_shards" : 2,
  "active_shards" : 2,
  "relocating_shards" : 0,
  "initializing_shards" : 0,
  "unassigned_shards" : 0,
  "delayed_unassigned_shards" : 0,
  "number_of_pending_tasks" : 0,
  "number_of_in_flight_fetch" : 0,
  "task_max_waiting_in_queue_millis" : 0,
  "active_shards_percent_as_number" : 100.0
}

上面status的状态为green,表示集群正常。到这里ES集群就搭建完了。为了方便操作可以再部署一个kibana服务,如下:

---
apiVersion: v1
kind: ConfigMap
metadata:
  namespace: elastic
  name: kibana-config
  labels:
    app: kibana
data:
  kibana.yml: |-
    server.host: 0.0.0.0

    elasticsearch:
      hosts: ${ELASTICSEARCH_HOSTS}
      username: ${ELASTICSEARCH_USER}
      password: ${ELASTICSEARCH_PASSWORD}
---
apiVersion: v1
kind: Service
metadata:
  namespace: elastic
  name: kibana
  labels:
    app: kibana
spec:
  ports:
  - port: 5601
    name: webinterface
  selector:
    app: kibana
---
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
  annotations:
    prometheus.io/http-probe: 'true'
    prometheus.io/scrape: 'true'
  name: kibana
  namespace: elastic
spec:
  rules:
    - host: kibana.coolops.cn
      http:
        paths:
          - backend:
              serviceName: kibana
              servicePort: 5601 
            path: /
---
apiVersion: apps/v1
kind: Deployment
metadata:
  namespace: elastic
  name: kibana
  labels:
    app: kibana
spec:
  selector:
    matchLabels:
      app: kibana
  template:
    metadata:
      labels:
        app: kibana
    spec:
      containers:
      - name: kibana
        image: docker.elastic.co/kibana/kibana:7.8.0
        ports:
        - containerPort: 5601
          name: webinterface
        env:
        - name: ELASTICSEARCH_HOSTS
          value: "http://elasticsearch-client.elastic.svc.cluster.local:9200"
        - name: ELASTICSEARCH_USER
          value: "elastic"
        - name: ELASTICSEARCH_PASSWORD
          valueFrom:
            secretKeyRef:
              name: elasticsearch-pw-elastic
              key: password
        volumeMounts:
        - name: config
          mountPath: /usr/share/kibana/config/kibana.yml
          readOnly: true
          subPath: kibana.yml
      volumes:
      - name: config
        configMap:
          name: kibana-config
---

然后执行kubectl apply -f kibana.yaml创建kibana,查看pod的状态是否为running。

# kubectl get pod -n elastic 
NAME                                    READY   STATUS    RESTARTS   AGE
elasticsearch-client-f79cf4f7b-pbz9d    1/1     Running   0          30m
elasticsearch-data-0                    1/1     Running   0          33m
elasticsearch-master-77d5d6c9db-gklgd   1/1     Running   0          36m
elasticsearch-master-77d5d6c9db-gvhcb   1/1     Running   0          36m
elasticsearch-master-77d5d6c9db-pflz6   1/1     Running   0          36m
kibana-6b9947fccb-4vp29                 1/1     Running   0          3m51s

如下图所示,使用上面我们创建的 Secret 对象的 elastic 用户和生成的密码即可登录:
image.png
登录后界面如下:
image.png

3.2、搭建skywalking server

我这里使用helm安装


(1)安装helm,这里是使用的helm3

wget https://get.helm.sh/helm-v3.0.0-linux-amd64.tar.gz
tar zxvf helm-v3.0.0-linux-amd64.tar.gz
mv linux-amd64/helm /usr/bin/

说明:helm3没有tiller这个服务端了,直接用kubeconfig进行验证通信,所以建议部署在master节点


(2)下载skywalking的代码

mkdir /home/install/package -p
cd /home/install/package
git clone https://github.com/apache/skywalking-kubernetes.git


(3)进入chart目录进行安装

cd skywalking-kubernetes/chart
helm repo add elastic https://helm.elastic.co
helm dep up skywalking
helm install my-skywalking skywalking -n skywalking \
        --set elasticsearch.enabled=false \
        --set elasticsearch.config.host=elasticsearch-client.elastic.svc.cluster.local \
        --set elasticsearch.config.port.http=9200 \
        --set elasticsearch.config.user=elastic \
        --set elasticsearch.config.password=n816QscHORFQMQWQfs4U

先要创建一个skywalking的namespace: kubectl create ns skywalking


(4)查看所有pod是否处于running

# kubectl get pod
NAME                                     READY   STATUS       RESTARTS   AGE
my-skywalking-es-init-x89pr                 0/1     Completed    0          15h
my-skywalking-oap-694fc79d55-2dmgr          1/1     Running      0          16h
my-skywalking-oap-694fc79d55-bl5hk          1/1     Running      4          16h
my-skywalking-ui-6bccffddbd-d2xhs           1/1     Running      0          16h

也可以通过以下命令来查看chart。

# helm list --all-namespaces
NAME               	NAMESPACE  	REVISION	UPDATED                                	STATUS  	CHART                    	APP VERSION
my-skywalking      	skywalking 	1       	2020-09-29 14:42:10.952238898 +0800 CST	deployed	skywalking-3.1.0         	8.1.0      

如果要修改配置,则直接修改value.yaml,如下我们修改my-skywalking-ui的service为NodePort,则如下修改:

.....
ui:
  name: ui
  replicas: 1
  image:
    repository: apache/skywalking-ui
    tag: 8.1.0
    pullPolicy: IfNotPresent
....
  service:
    type: NodePort 
    # clusterIP: None
    externalPort: 80
    internalPort: 8080

....

然后使用以下命名升级即可。

helm upgrade sky-server ../skywalking -n skywalking

然后我们可以查看service是否变为NodePort了。

# kubectl get svc -n skywalking 
NAME                TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)               AGE
my-skywalking-oap   ClusterIP   10.109.109.131   <none>        12800/TCP,11800/TCP   88s
my-skywalking-ui    NodePort    10.102.247.110   <none>        80:32563/TCP          88s

现在就可以通过UI界面查看skywalking了,界面如下:
image.png

3.3、应用接入skywalking agent

现在skywalking的服务端已经安装好了,接下来就是应用接入了,所谓的应用接入就是应用在启动的时候加入skywalking agent,在容器中接入agent的方式我这里介绍两种。

  • 在制作应用镜像的时候把agent所需的文件和包一起打进去
  • 以sidecar的形式给应用容器接入agent


首先我们应该下载对应的agent软件包:

wget https://mirrors.tuna.tsinghua.edu.cn/apache/skywalking/8.1.0/apache-skywalking-apm-8.1.0.tar.gz
tar xf apache-skywalking-apm-8.1.0.tar.gz

(1)在制作应用镜像的时候把agent所需的文件和包一起打进去
开发类似下面的Dockerfile,然后直接build镜像即可,这种方法比较简单

FROM harbor-test.coolops.com/coolops/jdk:8u144_test
RUN mkdir -p /usr/skywalking/agent/
ADD apache-skywalking-apm-bin/agent/ /usr/skywalking/agent/

注意:这个Dockerfile是咱们应用打包的基础镜像,不是应用的Dockerfile


(2)、以sidecar的形式添加agent包
首先制作一个只有agent的镜像,如下:

FROM busybox:latest 
ENV LANG=C.UTF-8
RUN set -eux && mkdir -p /usr/skywalking/agent/
ADD apache-skywalking-apm-bin/agent/ /usr/skywalking/agent/
WORKDIR /

然后我们像下面这样开发deployment的yaml清单。

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    name: demo-sw
  name: demo-sw
spec:
  replicas: 1
  selector:
    matchLabels:
      name: demo-sw
  template:
    metadata:
      labels:
        name: demo-sw
    spec:
      initContainers:
      - image: innerpeacez/sw-agent-sidecar:latest
        name: sw-agent-sidecar
        imagePullPolicy: IfNotPresent
        command: ['sh']
        args: ['-c','mkdir -p /skywalking/agent && cp -r /usr/skywalking/agent/* /skywalking/agent']
        volumeMounts:
        - mountPath: /skywalking/agent
          name: sw-agent
      containers:
      - image: harbor.coolops.cn/skywalking-java:1.7.9
        name: demo
        command:
        - java -javaagent:/usr/skywalking/agent/skywalking-agent.jar -Dskywalking.agent.service_name=${SW_AGENT_NAME} -jar demo.jar
        volumeMounts:
        - mountPath: /usr/skywalking/agent
          name: sw-agent
        ports:
        - containerPort: 80
        env:
          - name: SW_AGENT_COLLECTOR_BACKEND_SERVICES
            value: 'my-skywalking-oap.skywalking.svc.cluster.local:11800'
          - name: SW_AGENT_NAME
            value: cartechfin-open-platform-skywalking
      volumes:
      - name: sw-agent
        emptyDir: {}

我们在启动应用的时候只要引入skywalking的javaagent即可,如下:

java -javaagent:/path/to/skywalking-agent/skywalking-agent.jar -Dskywalking.agent.service_name=${SW_AGENT_NAME} -jar yourApp.jar


然后我们就可以在UI界面看到注册上来的应用了,如下:
image.png
可以查看JVM数据,如下:
image.png


也可以查看其拓扑图,如下:
image.png
还可以追踪不同的uri,如下:
image.png


到这里整个服务就搭建完了,你也可以试一下。


参考文档:
1、https://github.com/apache/skywalking-kubernetes
2、http://skywalking.apache.org/zh/blog/2019-08-30-how-to-use-Skywalking-Agent.html
3、https://github.com/apache/skywalking/blob/5.x/docs/cn/Deploy-skywalking-agent-CN.md

posted @ 2020-09-29 16:09  乔克爱运维  阅读(1602)  评论(0编辑  收藏  举报