Hadoop_MapReduc Writable案例
项目的其他文件已在WordCount案例中完成了
只需完成FlowBean类型文件和对其中的Mapper,Reducer,Driver文件进行修改即可
FlowBean.java
package org.cheetah.mapreduce.writable;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
/**
* 1、定一个类实现writable接口
* 2、重写序列化和反序列化接口
* 3、重写空参构造
* 4、toString方法
*/
public class FlowBean implements Writable {
private long upFlow; //上行流量
private long downFlow; //下行流量
private long sumFlow; //总流量
//空参构造
public FlowBean() {
}
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
public long getSumFlow() {
return sumFlow;
}
public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}
public void setSumFlow() {
this.sumFlow = this.upFlow + this.downFlow;
}
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
@Override
public void readFields(DataInput in) throws IOException {
this.upFlow = in.readLong();
this.downFlow = in.readLong();
this.sumFlow = in.readLong();
}
@Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}
}
FlowMapper.java
package org.cheetah.mapreduce.writable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
private Text outK = new Text();
private FlowBean outV = new FlowBean();
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, FlowBean>.Context context) throws IOException, InterruptedException {
//1、获取一行
String line = value.toString();
//2、切割
String[] split = line.split("\t");
//3、抓取想要的数据
String phone = split[1];
String up = split[split.length - 2];
String down = split[split.length - 1];
//4、封装
outK.set(phone);
outV.setUpFlow(Long.parseLong(up));
outV.setDownFlow(Long.parseLong(down));
outV.setSumFlow();//在bean中自动相加了
//5、写出
context.write(outK,outV);
}
}
FlowReducer
package org.cheetah.mapreduce.writable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class FlowReducer extends Reducer<Text,FlowBean,Text,FlowBean> {
private FlowBean outV=new FlowBean();
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Reducer<Text, FlowBean, Text, FlowBean>.Context context) throws IOException, InterruptedException {
//1 便利集合累加值
long totalUp=0;
long totalDown=0;
for (FlowBean value : values) {
totalUp+=value.getUpFlow();
totalDown+=value.getDownFlow();
}
//2 封装outK,outV
outV.setUpFlow(totalUp);
outV.setDownFlow(totalDown);
outV.setSumFlow();
//3 context写出
context.write(key,outV);
}
}
FlowDriver
package org.cheetah.mapreduce.writable;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class FlowDriver {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
//1 获取job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//2 获取jar包
job.setJarByClass(FlowDriver.class);
//3 关联mapper 和 reducer
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReducer.class);
//4 设置mapper 输出key和value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
//5 设置最终输出的key和value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
//6 数值数据的输入路径和输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//7 提交job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
之后打包,扔到服务器上,测试即可