【硬件篇之电源纹波噪声测试】

 

     前言:

   任何电子产品的运行,都少不了“电源”这个大动脉,这个大动脉的稳定,强健就是保证产品稳定,可靠,长期运行的关键。

   产品电源的测试包括:电压测试,纹波噪声测试,电流测试,上下电时序及斜率测试,快速上下电测试,短路测试,如果说电压测试和电流测试是保证电源的强壮性,纹波噪声测试及上下电时序及斜率测试是保证电源的稳定性,精准无损的纹波噪声测试为优化设计提供强力支撑。

  

概念定义

我们日常的电子产品供电一般为直流电源,5V/9V/12V,我们理想的电源是:

实际把直流电源的精度调高,观察角度放宽,实际直流电源是这样的:

     形如其名,蓝色大波浪就是电源的纹波,在波浪上的红色脉冲尖峰就是电源噪声,一般使用峰峰值表示,即Pk-Pk值=V波峰-V波谷,单位mV,Pk-Pk值越小,代表纹波噪声越小,电源越优质;

     因为我们电路使用的敏感元件,都有一个可承受最大电压范围及逻辑电平的分界线,超过这个最大电压,就有可能损坏元件,直接影响到产品寿命,而出现过低电压时,有可能引起CPU等关键器件的逻辑错误,保证电源的纹波噪声处于合理范围,才能保持产品的正常运行。

    通常所说的纹波主要是由直流电源产生,频率较低,直流电源包括线性电源和开关电源两类,线性电源的纹波噪声主要由前级电源传递以及同步开关噪声产生,纹波噪声较小,输出电压比较稳定,开关电源又分为单相交流输入的AC-DC开关电源和DC-DC的开关电源,也被称为一次电源和二次电源。

     

  一次电源纹波噪声示意图

 图中100Hz的整流纹波,其为50Hz工频的两倍,由整流器整流产生,锯齿波部分由电源PWM调节引起,并叠加了与电源开关频率同频的开关噪声,非周期性出现的噪声为随机噪声。

     二次电源纹波噪声示意图

   二次电源的纹波噪声,没有一次电源的纹波噪声有规律,主要由电容的充放电,PWM调节和干扰引起,电源开关纹波频率同PWM频率,一般为几百KHz,非周期出现的噪声为随机噪声。

      不同于纹波,噪声存在于全频带的信号中,除去开关噪声和随机噪声,单板上的电源还存在板上信号干扰带来的噪声,噪声的成因:1.器件高速开关状态下,瞬变的交变电流过大;2.电流回路存在电感;频率在几十MHz到上百MHz。

    纹波噪声测试的难点:

1、测试结果容易引入外界的电磁干扰,造成结果偏大;

2、仪器,测试方法选择不正确,导致测试信号波形失真,丢失部分频谱的纹波噪声,以下我们围绕解决这两点来进行测试的准备。

    

仪器选用原则

    电源纹波噪声测试均采用示波器配合相应探头的方法,连接示波器的探头主要包括:无源探头,有源探头,同轴电缆,根据各种测试探头的优缺点(主要是考虑精度):

同轴电缆测试结果较为准确,且受人为因素的影响较小,推荐使用同轴电缆并配合使用隔直电容的方法进行测试。

仪器选用如下:

- 示波器一台,带宽达到1GHz,灵敏度至少达到10mV/div,存储深度不低于                                100K;

- BNC-SMA转接头一个,射频同轴连接器;

-同轴电缆_SMA-JB3母头-半柔线缆两根,连接转接头与隔直电容,隔直电容与测试线;

-隔直电容1个,为方便连接,可自制一个转接板,焊接上隔直电容,转接板的接头和走线的阻 抗要保证50欧姆;

-SMA-KYB1铜管射频同轴测试线,焊接在单板,另一端通过同轴电缆接到隔直电容;

    

测试步骤

1.测试准备:

   -确认单板运行正常,且需工作在满载状态下,示波器与被测系统共地;

   -确认单板上的测试点,一般选择靠近被测对象的电容,并把同轴线缆焊接在电容两端;

    -确保被测电源电压不超过12V;

2.将单板运行在最大业务,将同轴线探头通过隔直电容连接到示波器,确认波形正常;

3.设置示波器,开始进行纹波测试

耦合方式:DC耦合+隔直电容

输入阻抗设置:50Ω

带宽设置:20MHz

采样时基:20ms/div

采样率:1.25Gs/s

垂直分辨率:10mV/div,根据实际调节,保证波形占到屏幕的2/3

采样方式:打开长余辉模式,并开启快速捕获DPO功能

应用场景:开关电源输出端

持续时间:acqs>50000

     记录Pk-Pk值,并关注MAX,MIN值,若测试结果偏大,尽量调整同轴电缆和引线,减少受到外部高频元件的干扰。

4.设置示波器,开始进行噪声测试

耦合方式:DC耦合+隔直电容

输入阻抗设置:50Ω

带宽设置:全带宽,一般≥500MHz

采样时基:20ms/div

采样率:1.25Gs/s,不低于1Gs/s

垂直分辨率:10mV/div,根据实际调节,保证波形占到屏幕的2/3

采样方式:打开长余辉模式,并开启快速捕获DPO功能

应用场景:芯片处电源测试

持续时间:acqs>50000

     记录Pk-Pk值,并关注MAX,MIN值,若测试结果偏大,尽量调整同轴电缆和引线,减少受到外部高频元件的干扰。

注意:测试探头-同轴线应尽量垂直单板,并远离噪声源DDR,DCDC等元器件;

5.对比测试结果,常规下:电源的纹波要求≤3%*电压,噪声要求≤5%*电压,特殊芯片会要求1%的精度,具体以芯片规格书为准。

    

测试提升

  优秀的测试人员不只是客观准确的完成测试任务,提交测试报告,还要有问题的定位能力及解决测试fail的能力。

   电源的纹波噪声超标,我们可以从以下几个角度出发,优化我们的设计,减小纹波噪声:

  • 确认同轴线缆周围是否有高频元件及电感器件,调整同轴线缆,观察测试结果,排除外界干扰;

  • 优化开关电源电路的输入,输出滤波电容搭配,大电容搭配小电容,一般是100:1的比例,因为负载运行过程会出现电流用量的频繁变化,增大电容可以显著减小纹波噪声,但到一定程度后效果甚微,根据实际测试调整电容的比例;

  • 在满足输出电流前提下可加大电感量,电感量越大,输出纹波会减小,但动态响应变差,根据实际测试情况调整电感量;

  • 优化输出到反馈端的元件,减小串联电阻,增大并联电容,可以提高开关电源的动态响应,优化纹波噪声;

  • 优化PCB的布局及走线,较长的走线,过孔都会引入较大的干扰,在走线中间,过孔处增加去耦电容;

  • 选择动态响应比较好的功率变换器,可以优化重载下的纹波噪声;

扫码立即关注我

posted @ 2020-12-07 16:51  良知犹存  阅读(2074)  评论(0编辑  收藏  举报