import numpy as np
from sklearn.preprocessing import MinMaxScaler
# 生成一个 10x5 的随机矩阵
matrix = np.random.rand(10, 5)
# 创建 MinMaxScaler 对象
scaler = MinMaxScaler()
# 对矩阵进行归一化
normalized_matrix = scaler.fit_transform(matrix)
# 对归一化后的矩阵的前两列进行反归一化
inverse_normalized_first_two_columns = scaler.inverse_transform(np.hstack([normalized_matrix[:, :2], np.zeros((10, 3))]))[:, :2]
print("原始矩阵:")
print(matrix)
print("\n归一化后的矩阵:")
print(normalized_matrix)
print("\n前两列反归一化后的结果:")
print(inverse_normalized_first_two_columns)