Python | 信息熵 Information Entropy

def counter(list):
	c_dict = {}

	for i in list:
		if i in c_dict:
			c_dict[i] += 1
		else:
			c_dict[i] = 1
	return c_dict


def entropy(x):
	counts = counter(x) #每个变量出现的次数
	prob = [i/len(x) for i in counts.values()] # 每个变量发生的概率
	return -sum([i*math.log(i) for i in prob]) # 计算信息熵


x = np.array([2,3,4,1,1,3,4,5,6,2,1,3,4,5,5,6,7,3,2,4,4,2])
print(entropy(x))
posted @   华小电  阅读(122)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
点击右上角即可分享
微信分享提示