性能测试之垃圾处理器以及JVM调优普及
GC的基础知识
1.什么是垃圾
C语言申请内存:malloc free
C++: new delete
c/C++ 手动回收内存
Java: new ?
自动内存回收,编程上简单,系统不容易出错,手动释放内存,容易出两种类型的问题:
- 忘记回收
- 多次回收
没有任何引用指向的一个对象或者多个对象(循环引用)
2.如何定位垃圾
- 引用计数(ReferenceCount)
- 根可达算法(RootSearching)
3.常见的垃圾回收算法
- 标记清除(mark sweep) - 位置不连续 产生碎片 效率偏低(两遍扫描)
- 拷贝算法 (copying) - 没有碎片,浪费空间
- 标记压缩(mark compact) - 没有碎片,效率偏低(两遍扫描,指针需要调整)
4.JVM内存分代模型(用于分代垃圾回收算法)
- 部分垃圾回收器使用的模型
除Epsilon ZGC Shenandoah之外的GC都是使用逻辑分代模型
G1是逻辑分代,物理不分代
除此之外不仅逻辑分代,而且物理分代
-
新生代 + 老年代 + 永久代(1.7)Perm Generation/ 元数据区(1.8) Metaspace
- 永久代 元数据 - Class
- 永久代必须指定大小限制 ,元数据可以设置,也可以不设置,无上限(受限于物理内存)
- 字符串常量 1.7 - 永久代,1.8 - 堆
- MethodArea逻辑概念 - 永久代、元数据
-
新生代 = Eden + 2个suvivor区
- YGC回收之后,大多数的对象会被回收,活着的进入s0
- 再次YGC,活着的对象eden + s0 -> s1
- 再次YGC,eden + s1 -> s0
- 年龄足够 -> 老年代 (15 CMS 6)
- s区装不下 -> 老年代
-
老年代
- 顽固分子
- 老年代满了FGC Full GC
-
GC Tuning (Generation)
- 尽量减少FGC
- MinorGC = YGC
- MajorGC = FGC
-
对象分配过程图
-
动态年龄:(不重要) https://www.jianshu.com/p/989d3b06a49d
-
分配担保:(不重要) YGC期间 survivor区空间不够了 空间担保直接进入老年代 参考:https://cloud.tencent.com/developer/article/1082730
5.常见的垃圾回收器
- JDK诞生 Serial追随 提高效率,诞生了PS,为了配合CMS,诞生了PN,CMS是1.4版本后期引入,CMS是里程碑式的GC,它开启了并发回收的过程,但是CMS毛病较多,因此目前任何一个JDK版本默认是CMS 并发垃圾回收是因为无法忍受STW
- Serial 年轻代 串行回收
- PS 年轻代 并行回收
- ParNew 年轻代 配合CMS的并行回收
- SerialOld
- ParallelOld
- ConcurrentMarkSweep 老年代 并发的, 垃圾回收和应用程序同时运行,降低STW的时间(200ms) CMS问题比较多,所以现在没有一个版本默认是CMS,只能手工指定 CMS既然是MarkSweep,就一定会有碎片化的问题,碎片到达一定程度,CMS的老年代分配对象分配不下的时候,使用SerialOld 进行老年代回收 想象一下: PS + PO -> 加内存 换垃圾回收器 -> PN + CMS + SerialOld(几个小时 - 几天的STW) 几十个G的内存,单线程回收 -> G1 + FGC 几十个G -> 上T内存的服务器 ZGC 算法:三色标记 + Incremental Update
- G1(10ms) 算法:三色标记 + SATB
- ZGC (1ms) PK C++ 算法:ColoredPointers + LoadBarrier
- Shenandoah 算法:ColoredPointers + WriteBarrier
- Eplison
- PS 和 PN区别的延伸阅读: ▪https://docs.oracle.com/en/java/javase/13/gctuning/ergonomics.html#GUID-3D0BB91E-9BFF-4EBB-B523-14493A860E73
- 垃圾收集器跟内存大小的关系
- Serial 几十兆
- PS 上百兆 - 几个G
- CMS - 20G
- G1 - 上百G
- ZGC - 4T - 16T(JDK13)
1.8默认的垃圾回收:PS + ParallelOld
常见垃圾回收器组合参数设定:(1.8)
- -XX:+UseSerialGC = Serial New (DefNew) + Serial Old
- 小型程序。默认情况下不会是这种选项,HotSpot会根据计算及配置和JDK版本自动选择收集器
- -XX:+UseParNewGC = ParNew + SerialOld
- 这个组合已经很少用(在某些版本中已经废弃)
- https://stackoverflow.com/questions/34962257/why-remove-support-for-parnewserialold-anddefnewcms-in-the-future
- -XX:+UseConc(urrent)MarkSweepGC = ParNew + CMS + Serial Old
- -XX:+UseParallelGC = Parallel Scavenge + Parallel Old (1.8默认) 【PS + SerialOld】
- -XX:+UseParallelOldGC = Parallel Scavenge + Parallel Old
- -XX:+UseG1GC = G1
-
Linux中没找到默认GC的查看方法,而windows中会打印UseParallelGC
- java +XX:+PrintCommandLineFlags -version
- 通过GC的日志来分辨
-
Linux下1.8版本默认的垃圾回收器到底是什么?
- 1.8.0_181 默认(看不出来)Copy MarkCompact
- 1.8.0_222 默认 PS + PO
JVM调优第一步,了解JVM常用命令行参数
-
VM的命令行参数参考:https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
-
HotSpot参数分类
标准: - 开头,所有的HotSpot都支持
非标准:-X 开头,特定版本HotSpot支持特定命令
不稳定:-XX 开头,下个版本可能取消
- 区分概念:内存泄漏memory leak,内存溢出out of memory
- java -XX:+PrintCommandLineFlags HelloGC
- java -Xmn10M -Xms40M -Xmx60M -XX:+PrintCommandLineFlags -XX:+PrintGC HelloGC PrintGCDetails PrintGCTimeStamps PrintGCCauses
- java -XX:+UseConcMarkSweepGC -XX:+PrintCommandLineFlags HelloGC
- java -XX:+PrintFlagsInitial 默认参数值
- java -XX:+PrintFlagsFinal 最终参数值
- java -XX:+PrintFlagsFinal | grep xxx 找到对应的参数
- java -XX:+PrintFlagsFinal -version |grep
调优前的基础概念:
- 吞吐量:用户代码时间 /(用户代码执行时间 + 垃圾回收时间)
- 响应时间:STW越短,响应时间越好
所谓调优,首先确定,追求啥?吞吐量优先,还是响应时间优先?还是在满足一定的响应时间的情况下,要求达到多大的吞吐量...
问题:
科学计算,吞吐量。数据挖掘,thrput。吞吐量优先的一般:(PS + PO)
响应时间:网站 GUI API (1.8 G1)
什么是调优?
- 根据需求进行JVM规划和预调优
- 优化运行JVM运行环境(慢,卡顿)
- 解决JVM运行过程中出现的各种问题(OOM)
调优,从规划开始
-
调优,从业务场景开始,没有业务场景的调优都是耍流氓
-
无监控(压力测试,能看到结果),不调优
-
步骤:
- 熟悉业务场景(没有最好的垃圾回收器,只有最合适的垃圾回收器)
- 响应时间、停顿时间 [CMS G1 ZGC] (需要给用户作响应)
- 吞吐量 = 用户时间 /( 用户时间 + GC时间) [PS]
- 选择回收器组合
- 计算内存需求(经验值 1.5G 16G)
- 选定CPU(越高越好)
- 设定年代大小、升级年龄
- 设定日志参数
- -Xloggc:/opt/xxx/logs/xxx-xxx-gc-%t.log -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=5 -XX:GCLogFileSize=20M -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCCause
- 或者每天产生一个日志文件
- 观察日志情况
- 熟悉业务场景(没有最好的垃圾回收器,只有最合适的垃圾回收器)
优化环境
- 有一个50万PV的资料类网站(从磁盘提取文档到内存)原服务器32位,1.5G 的堆,用户反馈网站比较缓慢,因此公司决定升级,新的服务器为64位,16G 的堆内存,结果用户反馈卡顿十分严重,反而比以前效率更低了
- 为什么原网站慢? 很多用户浏览数据,很多数据load到内存,内存不足,频繁GC,STW长,响应时间变慢
- 为什么会更卡顿? 内存越大,FGC时间越长
- 咋办? PS -> PN + CMS 或者 G1
- 系统CPU经常100%,如何调优?(面试高频) CPU100%那么一定有线程在占用系统资源,
- 找出哪个进程cpu高(top)
- 该进程中的哪个线程cpu高(top -Hp)
- 导出该线程的堆栈 (jstack)
- 查找哪个方法(栈帧)消耗时间 (jstack)
- 工作线程占比高 | 垃圾回收线程占比高
系统内存飙高,如何查找问题? - 导出堆内存 (jmap/jvisualvm工具)
- 使用我们上一篇讲的JVM监控工具装入文件进行分析
- 如何监控JVM
- 使用我们上一篇讲的JVM监控工具进行监控
解决JVM运行中的问题
-
一般是运维团队首先受到报警信息(CPU Memory)
-
top命令观察到问题:内存不断增长 CPU占用率居高不下
-
top -Hp 观察进程中的线程,哪个线程CPU和内存占比高
-
jps定位具体java进程 jstack 定位线程状况,重点关注:WAITING BLOCKED eg. waiting on <0x0000000088ca3310> (a java.lang.Object) 假如有一个进程中100个线程,很多线程都在waiting on ,一定要找到是哪个线程持有这把锁 怎么找?搜索jstack dump的信息,找 ,看哪个线程持有这把锁RUNNABLE
-
使用jvisualvm动态观察gc情况,查看YGC以及FGC速度
-
jmap - histo 端口| head -20,查找有多少对象产生
-
线上系统,内存特别大,jmap执行期间会对进程产生很大影响,甚至卡顿(电商不适合) 1:设定了参数HeapDump,OOM的时候会自动产生堆转储文件 2:很多服务器备份(高可用),停掉这台服务器对其他服务器不影响 3:在线定位(一般小点儿公司用不到)
-
使用jvisualvm 进行dump文件分析
-
找到代码的问题
GC算法的基础概念
- Card Table 由于做YGC时,需要扫描整个OLD区,效率非常低,所以JVM设计了CardTable, 如果一个OLD区CardTable中有对象指向Y区,就将它设为Dirty,下次扫描时,只需要扫描Dirty Card 在结构上,Card Table用BitMap来实现
CMS
CMS的问题
- Memory Fragmentation
-XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction 默认为0 指的是经过多少次FGC才进行压缩
- Floating Garbage
Concurrent Mode Failure 产生:if the concurrent collector is unable to finish reclaiming the unreachable objects before the tenured generation fills up, or if an allocation cannot be satisfiedwith the available free space blocks in the tenured generation, then theapplication is paused and the collection is completed with all the applicationthreads stopped
解决方案:降低触发CMS的阈值
PromotionFailed
解决方案类似,保持老年代有足够的空间
–XX:CMSInitiatingOccupancyFraction 92% 可以降低这个值,让CMS保持老年代足够的空间
G1
- ▪https://www.oracle.com/technical-resources/articles/java/g1gc.html
案例汇总
OOM产生的原因多种多样,有些程序未必产生OOM,不断FGC(CPU飙高,但内存回收特别少) (上面案例)
-
硬件升级系统反而卡顿的问题
-
线程池不当运用产生OOM问题 不断的往List里加对象(实在太LOW)
-
smile jira问题 实际系统不断重启 解决问题 加内存 + 更换垃圾回收器 G1 真正问题在哪儿?不知道
-
tomcat http-header-size过大问题(Hector)
-
lambda表达式导致方法区溢出问题
-
重写finalize引发频繁GC 小米云,HBase同步系统,系统通过nginx访问超时报警,最后排查,C++程序员重写finalize引发频繁GC问题 为什么C++程序员会重写finalize?(new delete) finalize耗时比较长(200ms)
-
如果有一个系统,内存一直消耗不超过10%,但是观察GC日志,发现FGC总是频繁产生,会是什么引起的? System.gc() (这个比较Low)
-
Distuptor有个可以设置链的长度,如果过大,然后对象大,消费完不主动释放,会溢出 (来自 死物风情)
-
用jvm都会溢出,mycat用崩过,1.6.5某个临时版本解析sql子查询算法有问题,9个exists的联合sql就导致生成几百万的对象(来自 死物风情)
-
new 大量线程,会产生 native thread OOM,(low)应该用线程池, 解决方案:减少堆空间(太TMlow了),预留更多内存产生native thread JVM内存占物理内存比例 50% - 80%
GC常用参数
- -Xmn -Xms -Xmx -Xss 年轻代 最小堆 最大堆 栈空间
- -XX:+UseTLAB 使用TLAB,默认打开
- -XX:+PrintTLAB 打印TLAB的使用情况
- -XX:TLABSize 设置TLAB大小
- -XX:+DisableExplictGC System.gc()不管用 ,FGC
- -XX:+PrintGC
- -XX:+PrintGCDetails
- -XX:+PrintHeapAtGC
- -XX:+PrintGCTimeStamps
- -XX:+PrintGCApplicationConcurrentTime (低) 打印应用程序时间
- -XX:+PrintGCApplicationStoppedTime (低) 打印暂停时长
- -XX:+PrintReferenceGC (重要性低) 记录回收了多少种不同引用类型的引用
- -verbose:class 类加载详细过程
- -XX:+PrintVMOptions
- -XX:+PrintFlagsFinal -XX:+PrintFlagsInitial 必须会用
- -Xloggc:opt/log/gc.log
- -XX:MaxTenuringThreshold 升代年龄,最大值15
- 锁自旋次数 -XX:PreBlockSpin 热点代码检测参数-XX:CompileThreshold 逃逸分析 标量替换 ... 这些不建议设置
Parallel常用参数
- -XX:SurvivorRatio
- -XX:PreTenureSizeThreshold 大对象到底多大
- -XX:MaxTenuringThreshold
- -XX:+ParallelGCThreads 并行收集器的线程数,同样适用于CMS,一般设为和CPU核数相同
- -XX:+UseAdaptiveSizePolicy 自动选择各区大小比例
CMS常用参数
- -XX:+UseConcMarkSweepGC
- -XX:ParallelCMSThreads CMS线程数量
- -XX:CMSInitiatingOccupancyFraction 使用多少比例的老年代后开始CMS收集,默认是68%(近似值),如果频繁发生SerialOld卡顿,应该调小,(频繁CMS回收)
- -XX:+UseCMSCompactAtFullCollection 在FGC时进行压缩
- -XX:CMSFullGCsBeforeCompaction 多少次FGC之后进行压缩
- -XX:+CMSClassUnloadingEnabled
- -XX:CMSInitiatingPermOccupancyFraction 达到什么比例时进行Perm回收
- GCTimeRatio 设置GC时间占用程序运行时间的百分比
- -XX:MaxGCPauseMillis 停顿时间,是一个建议时间,GC会尝试用各种手段达到这个时间,比如减小年轻代
G1常用参数
- -XX:+UseG1GC
- -XX:MaxGCPauseMillis 建议值,G1会尝试调整Young区的块数来达到这个值
- -XX:GCPauseIntervalMillis ?GC的间隔时间
- -XX:+G1HeapRegionSize 分区大小,建议逐渐增大该值,1 2 4 8 16 32。 随着size增加,垃圾的存活时间更长,GC间隔更长,但每次GC的时间也会更长 ZGC做了改进(动态区块大小)
- G1NewSizePercent 新生代最小比例,默认为5%
- G1MaxNewSizePercent 新生代最大比例,默认为60%
- GCTimeRatio GC时间建议比例,G1会根据这个值调整堆空间
- ConcGCThreads 线程数量
- InitiatingHeapOccupancyPercent 启动G1的堆空间占用比例
参考资料
- https://blogs.oracle.com/jonthecollector/our-collectors
- https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
- http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp
- JVM调优参考文档:https://docs.oracle.com/en/java/javase/13/gctuning/introduction-garbage-collection-tuning.html#GUID-8A443184-7E07-4B71-9777-4F12947C8184
- jmap命令参考: https://www.jianshu.com/p/507f7e0cc3a3
- jmap -heap pid
- jmap -histo pid
- jmap -clstats pid