Comsteed | 航纶

        天行健,君子以自强不息;地势坤,君子以厚德载物.

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::

Windows 95/NT的抢先式多任务

在32 位的Windows系统中,采用的是抢先式多任务,这意味着程序对CPU的占用时间是由系统决定的。系统为每个程序分配一定的CPU时间,当程序的运行超 过规定时间后,系统就会中断该程序并把CPU控制权转交给别的程序。与协同式多任务不同,这种中断是汇编语言级的。程序不必调用象PeekMessage 这样的函数来放弃对CPU的控制权,就可以进行费时的工作,而且不会导致系统的挂起。

进程与线程

在32位的Windows系统中,术语多任务是指系统可以同时运行多个进程,而每个进程也可以同时执行多个线程。

进程就是应用程序的运行实例。每个进程都有自己私有的虚拟地址空间。每个进程都有一个主线程,但可以建立另外的线程。进程中的线程是并行执行的,每个线程占用CPU的时间由系统来划分。

进 程就是应用程序的运行实例。每个进程都有自己私有的虚拟地址空间。每个进程都有一个主线程,但可以建立另外的线程。进程中的线程是并行执行的,每个线程占 用CPU的时间由系统来划分。可以把线程看成是操作系统分配CPU时间的基本实体。系统不停地在各个线程之间切换,它对线程的中断是汇编语言级的。系统为 每一个线程分配一个CPU时间片,某个线程只有在分配的时间片内才有对CPU的控制权。实际上,在PC机中,同一时间只有一个线程在运行。由于系统为每个 线程划分的时间片很小(20毫秒左右),所以看上去好象是多个线程在同时运行。 进程中的所有线程共享进程的虚拟地址空间,这意味着所有线程都可以访问进程的全局变量和资源。这一方面为编程带来了方便,但另一方面也容易造成冲突。

虽然在进程中进行费时的工作不会导致系统的挂起,但这会导致进程本身的挂起。所以,如果进程既要进行长期的工作,又要响应用户的输入,那么它可以启动一个线程来专门负责费时的工作,而主线程仍然可以与用户进行交互。

线程的创建和终止

线程分用户界面线程和工作者线程两种。用户界面线程拥有自己的消息泵来处理界面消息,可以与用户进行交互。工作者线程没有消息泵,一般用来完成后台工作。

MFC应用程序的线程由对象CWinThread表示。在多数情况下,程序不需要自己创建CWinThread对象。调用AfxBeginThread函数时会自动创建一个CWinThread对象。

应用程序的线程由对象CWinThread表示。在多数情况下,程序不需要自己创建CWinThread对象。调用AfxBeginThread函数时会自动创建一个CWinThread对象。

当发生下列事件之一时,线程被终止:

线程调用ExitThread。

线程函数返回,即线程隐含调用了ExitThread。

ExitThread。ExitProcess被进程的任一线程显示或隐含调用.用线程的句柄调用

TerminateThread。

用进程句柄调用TerminateProcess。

TerminateProcess。

线程函数返回,即线程隐含调用了ExitThread。

线程的同步

由 于同一进程的所有线程共享进程的虚拟地址空间,并且线程的中断是汇编语言级的,所以可能会发生两个线程同时访问同一个对象(包括全局变量、共享资源、 API函数和MFC对象等)的情况,这有可能导致程序错误。例如,如果一个线程在未完成对某一大尺寸全局变量的读操作时,另一个线程又对该变量进行了写操 作,那么第一个线程读入的变量值可能是一种修改过程中的不稳定值。

属于不同进程的线程在同时访问同一内存区域或共享资源时,也会存在同样的问题。

因此,在多线程应用程序中,常常需要采取一些措施来同步线程的执行。需要同步的情况包括以下几种:

在多个线程同时访问同一对象时,可能产生错误。例如,如果当一个线程正在读取一个至关重要的共享缓冲区时,另一个线程向该缓冲区写入数据,那么程序的运行结果就可能出错。程序应该尽量避免多个线程同时访问同一个缓冲区或系统资源。

在Windows 95环境下编写多线程应用程序还需要考虑重入问题。Windows NT是真正的32位操作系统,它解决了系统重入问题。而Windows 95由于继承了Windows 3.x的部分16位代码,没能够解决重入问题。这意味着在Windows 95中两个线程不能同时执行某个系统功能,否则有可能造成程序错误,甚至会造成系统崩溃。应用程序应该尽量避免发生两个以上的线程同时调用同一个 Windows API函数的情况。

由于大小和性能方面的原因,MFC对象在对象级不是线程安全的,只有在类级才是。也就是说,两个线程可以安全地使用两个不同的CString对象,但同时使用同一个CString对象就可能产生问题。如果必须使用同一个对象,那么应该采取适当的同步措施。

多个线程之间需要协调运行。例如,如果第二个线程需要等待第一个线程完成到某一步时才能运行,那么该线程应该暂时挂起以减少对CPU的占用时间,提高程序的执行效率。当第一个线程完成了相应的步骤后,应该发出某种信号来激活第二个线程。

等待函数

Win32 API提供了一组能使线程阻塞其自身执行的等待函数。这些函数只有在作为其参数的一个或多个同步对象(见下小节)产生信号时才会返回。在超过规定的等待时 间后,不管有无信号,函数也都会返回。在等待函数未返回时,线程处于等待状态,此时线程只消耗很少的CPU时间。

使用等待函数即可以保证线程的同步,又可以提高程序的运行效率。最常用的等待函数是WaitForSingleObject,该函数的声明为:

DWORD WaitForSingleObject(HANDLE hHandle, DWORD dwMilliseconds);

同步对象

同步对象用来协调多线程的执行,它可以被多个线程共享。线程的等待函数用同步对象的句柄作为参数,同步对象应该是所有要使用的线程都能访问到的。同步对象的状态要么是有信号的,要么是无信号的。同步对象主要有三种:事件、mutex和信号灯。

事件对象(Event)是最简单的同步对象,它包括有信号和无信号两种状态。在线程访问某一资源之前,也许需要等待某一事件的发生,这时用事件对象最合适。例如,只有在通信端口缓冲区收到数据后,监视线程才被激活。

事 件对象是用CreateEvent函数建立的。该函数可以指定事件对象的种类和事件的初始状态。如果是手工重置事件,那么它总是保持有信号状态,直到用 ResetEvent函数重置成无信号的事件。如果是自动重置事件,那么它的状态在单个等待线程释放后会自动变为无信号的。用SetEvent可以把事件 对象设置成有信号状态。在建立事件时,可以为对象起个名字,这样其它进程中的线程可以用OpenEvent函数打开指定名字的事件对象句柄。

mutex对象的状态在它不被任何线程拥有时是有信号的,而当它被拥有时则是无信号的。mutex对象很适合用来协调多个线程对共享资源的互斥访问(mutually exclusive)。

线 程用CreateMutex函数来建立mutex对象,在建立mutex时,可以为对象起个名字,这样其它进程中的线程可以用OpenMutex函数打开 指定名字的mutex对象句柄。在完成对共享资源的访问后,线程可以调用ReleaseMutex来释放mutex,以便让别的线程能访问共享资源。如果 线程终止而不释放mutex,则认为该mutex被废弃。

信号灯对象维护一个从0开始的计数,在计数值大于0时对象是有信号的,而在计数值 为0时则是无信号的。信号灯对象可用来限制对共享资源进行访问的线程数量。线程用CreateSemaphore函数来建立信号灯对象,在调用该函数时, 可以指定对象的初始计数和最大计数。在建立信号灯时也可以为对象起个名字,别的进程中的线程可以用OpenSemaphore函数打开指定名字的信号灯句 柄。

一般把信号灯的初始计数设置成最大值。每次当信号灯有信号使等待函数返回时,信号灯计数就会减1,而调用ReleaseSemaphore可以增加信号灯的计数。计数值越小就表明访问共享资源的程序越多。

除了上述三种同步对象外,表12.3中的对象也可用于同步。另外,有时可以用文件或通信设备作为同步对象使用。

当对象不再使用时,应该用CloseHandle函数关闭对象句柄。

关键节和互锁变量访问

关键节(Critical Seciton)与mutex的功能类似,但它只能由同一进程中的线程使用。关键节可以防止共享资源被同时访问。

进 程负责为关键节分配内存空间,关键节实际上是一个CRITICAL_SECTION型的变量,它一次只能被一个线程拥有。在线程使用关键节之前,必须调用 InitializeCriticalSection函数将其初始化。如果线程中有一段关键的代码不希望被别的线程中断,那么可以调用 EnterCriticalSection函数来申请关键节的所有权,在运行完关键代码后再用LeaveCriticalSection函数来释放所有 权。如果在调用EnterCriticalSection时关键节对象已被另一个线程拥有,那么该函数将无限期等待所有权。

利用互锁变量可 以建立简单有效的同步机制。使用函数InterlockedIncrement和InterlockedDecrement可以增加或减少多个线程共享的 一个32位变量的值,并且可以检查结果是否为0。线程不必担心会被其它线程中断而导致错误。如果变量位于共享内存中,那么不同进程中的线程也可以使用这种 机制。

串行通信与重叠I/O

Win 32系统为串行通信提供了全新的服务。传统的OpenComm、ReadComm、WriteComm、CloseComm等函数已经过时,WM_COMMNOTIFY消息也消失了。取而代之的是文件I/O函数提供的打开和关闭通信资源句柄及读写操作的基本接口。

新的文件I/O函数(CreateFile、ReadFile、WriteFile等)支持重叠式输入输出,这使得线程可以从费时的I/O操作中解放出来,从而极大地提高了程序的运行效率。

串行口的打开和关闭

Win32系统把文件的概念进行了扩展。无论是文件、通信设备、命名管道、邮件槽、磁盘、还是控制台,都是用API函数CreateFile来打开或创建的。

串行口的初始化

在打开通信设备句柄后,常常需要对串行口进行一些初始化工作。这需要通过一个DCB结构来进行。DCB结构包含了诸如波特率、每个字符的数据位数、奇偶校验和停止位数等信息。在查询或配置置串行口的属性时,都要用DCB结构来作为缓冲区。

调 用GetCommState函数可以获得串口的配置,该函数把当前配置填充到一个DCB结构中。一般在用CreateFile打开串行口后,可以调用 GetCommState函数来获取串行口的初始配置。要修改串行口的配置,应该先修改DCB结构,然后再调用SetCommState函数用指定的 DCB结构来设置串行口。

除了在DCB中的设置外,程序一般还需要设置I/O缓冲区的大小和超时。Windows用I/O缓冲区来暂存串行口输入和输出的数据,如果通信的速率较高,则应该设置较大的缓冲区。调用SetupComm函数可以设置串行口的输入和输出缓冲区的大小。

在 用ReadFile和WriteFile读写串行口时,需要考虑超时问题。如果在指定的时间内没有读出或写入指定数量的字符,那么ReadFile或 WriteFile的操作就会结束。要查询当前的超时设置应调用GetCommTimeouts函数,该函数会填充一个COMMTIMEOUTS结构。调 用SetCommTimeouts可以用某一个COMMTIMEOUTS结构的内容来设置超时。

有两种超时:间隔超时和总超时。间隔超时是指在接收时两个字符之间的最大时延,总超时是指读写操作总共花费的最大时间。写操作只支持总超时,而读操作两种超时均支持。用COMMTIMEOUTS结构可以规定读/写操作的超时.

重叠I/O

在 用ReadFile和WriteFile读写串行口时,既可以同步执行,也可以重叠(异步)执行。在同步执行时,函数直到操作完成后才返回。这意味着在同 步执行时线程会被阻塞,从而导致效率下降。在重叠执行时,即使操作还未完成,调用的函数也会立即返回。费时的I/O操作在后台进行,这样线程就可以干别的 事情。例如,线程可以在不同的句柄上同时执行I/O操作,甚至可以在同一句柄上同时进行读写操作。"重叠"一词的含义就在于此。

ReadFile函数只要在串行口输入缓冲区中读入指定数量的字符,就算完成操作。而WriteFile函数不但要把指定数量的字符拷入到输出缓冲中,而且要等这些字符从串行口送出去后才算完成操作。

ReadFile 和WriteFile函数是否为执行重叠操作是由CreateFile函数决定的。如果在调用CreateFile创建句柄时指定了 FILE_FLAG_OVERLAPPED标志,那么调用ReadFile和WriteFile对该句柄进行的读写操作就是重叠的,如果未指定重叠标志, 则读写操作是同步的.

posted on 2008-03-27 21:01  航纶  阅读(354)  评论(0编辑  收藏  举报