LOJ #2092. 「ZJOI2016」大森林(lct)

https://loj.ac/problem/2092

题解:

  • 因为保证询问合法,所以可以把询问放到最后去询问

  • 0操作可以视作对\([1,n]\)的树都操作,但是在1操作时,因为没有\(x\)的树不换生长节点,所以要和对应0操作的区间取交。

  • 设1操作的区间取交是[l,r],若从左往右考虑每个树,发现\(tree[l]\)\(tree[l-1]\)的区别就是把之前生长节点的子树复制到\(x\)下面,r同理。

  • 所以不难想到ETT暴力维护,但是可以建虚点,把一个生长节点的子树放到它的虚点下,虚点再指向它,这样就可以用lct维护了。

  • 注意到两个点的lca可能是一个虚点,这可能会对答案产生影响,因此lct要不换根的以求lca。

Code:

#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, _b = y; i <= _b; i ++)
#define ff(i, x, y) for(int i = x, _b = y; i <  _b; i ++)
#define fd(i, x, y) for(int i = x, _b = y; i >= _b; i --)
#define ll long long
#define pp printf
#define hh pp("\n")
using namespace std;

const int N = 4e5 + 5;

int n, m;
int td, tt;
int op, x, y, z;
int L[N], R[N];
#define pii pair<int, int>
#define pb push_back
#define si size()

namespace lct {
	int t[N][2], fa[N], pf[N], s[N], z[N];
	#define x0 t[x][0]
	#define x1 t[x][1]
	int lr(int x) { return t[fa[x]][1] == x;}
	void upd(int x) {
		s[x] = z[x] + s[x0] + s[x1];
	}
	void ro(int x) {
		int y = fa[x], k = lr(x);
		t[y][k] = t[x][!k]; if(t[x][!k]) fa[t[x][!k]] = y;
		fa[x] = fa[y]; if(fa[y]) t[fa[y]][lr(y)] = x;
		fa[y] = x, t[x][!k] = y, pf[x] = pf[y];
		upd(y); upd(x);
	}
	void sp(int x, int y) {
		for(; fa[x] != y; ro(x)) if(fa[fa[x]] != y)
			ro(lr(x) == lr(fa[x]) ? fa[x] : x);
	}
	void ac(int x) {
		int xx = x;
		for(int y = 0; x; ) {
			sp(x, 0), fa[x1] = 0, pf[x1] = x;
			x1 = y, fa[y] = x, pf[y] = 0;
			upd(x), y = x, x = pf[x];
		}
		sp(xx, 0);
	}
	void link(int x, int y) {
		ac(x); pf[x] = y;
	}
	void cut(int x) {
		ac(x);
		int y = x0;
		fa[y] = x0 = 0;
		upd(x);
	}
	int lca(int u, int v) {
		ac(u);
		int la = v;
		for(int x = v, y = 0; x; ) {
			sp(x, 0), fa[x1] = 0, pf[x1] = x;
			x1 = y, fa[y] = x, pf[y] = 0;
			upd(x), y = x, x = pf[x];
			if(x) la = x;
		}
		return la;
	}
	int findv(int x) {
		ac(x);
		return s[x];
	}
	int qry(int u, int v) {
		int w = lca(u, v);
		return findv(u) + findv(v) - 2 * findv(w) + 1;
	}
}

struct nod {
	int x, y, z;		
};

vector<nod> e[N], q[N];
int q0;

void Init() {
	scanf("%d %d", &n, &m);
	fo(i, 1, m) lct :: z[i] = lct :: z[i] = 1;
	L[1] = 1, R[1] = n;
	td = 1; tt = m + 2;
	int la = tt;
	lct :: link(la, 1);
	fo(i, 1, m) {
		scanf("%d %d %d", &op, &x, &y);
		if(op == 0) {
			td ++;
			L[td] = x, R[td] = y;
			lct :: link(td, la);
		} else
		if(op == 1) {
			scanf("%d", &z);
			
			x = max(x, L[z]);
			y = min(y, R[z]);
			
			if(x > y) continue;
			tt ++;
			lct :: link(tt, la);
			
			e[x].pb((nod) {tt, la, z});
			e[y + 1].pb((nod) {tt, z, la});
			
			la = tt;
		} else {
			scanf("%d", &z);
			q0 ++;
			q[x].pb((nod) {y, z, q0});
		}
	}
}

int ans[N];

void End() {
	fo(i, 1, n) {
		ff(_j, 0, e[i].si) {
			nod a = e[i][_j];
			lct :: cut(a.x);
			lct :: link(a.x, a.z);
		}
		ff(_j, 0, q[i].si) {
			nod a = q[i][_j];
			ans[a.z] = lct :: qry(a.x, a.y);
		}
	}
	fo(i, 1, q0) pp("%d\n", ans[i] - 1);
}

int main() {
	Init();
	End();
}
posted @ 2020-06-03 10:31  Cold_Chair  阅读(128)  评论(0编辑  收藏  举报