「NOI2016」循环之美(小性质+min_25筛)
题解
感觉这题最难的是第一个结论。
数值上不等,所以x/y首先要互质,然后如果在10进制是纯循环小数,不难想到y不是2、5的倍数就好了。
因为十进制下除以2和5是除得尽的。
必然会多出来的什么东西。
如果是k进制,可以类比得\(gcd(y,k)=1\)。
证明:
假设纯循环的位数是\(l\)
则\(x*k^l\equiv x(mod~y)\)
\(k^l\equiv 1(mod~y)\)
要存在\(l\)的话,就必须有\(gcd(k,y)=1\),反过来一样。
反演:
\(Ans=\sum_{i=1}^n\sum_{j=1}^m[(i,j)=1]*[(j,k)=1]\))
\(\sum_{d=1}^{min(n,m)} \mu(d)*[gcd(d,k)=1]*(n/d)*\sum_{j=1}^{m/d}[gcd(j,k)=1]\)
如果能解决前面的前缀和问题,后面的分块后容斥或者说预处理O(1)都不是问题。
然后你发现前面是个积性函数,而且是可以min_25筛的积性函数,不过要筛个两遍。
就没了……
Code:
#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
#define ff(i, x, y) for(int i = x, B = y; i < B; i ++)
#define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
#define ll long long
#define pp printf
#define hh pp("\n")
using namespace std;
int k;
int d[20], d0;
void fen(int x) {
for(int i = 2; i * i <= x; i ++) if(x % i == 0) {
d[++ d0] = i;
while(x % i == 0) x /= i;
}
if(x > 1) d[++ d0] = x;
}
namespace m25 {
const int N = 2e5 + 5;
int n, sq;
int w[N], w0, i1[N], i2[N];
int p[N], p0, bz[N];
void sieve(int n) {
fo(i, 2, n) {
if(!bz[i]) p[++ p0] = i;
for(int j = 1; i * p[j] <= n; j ++) {
int k = i * p[j];
bz[k] = 1; if(i % p[j] == 0) break;
}
}
}
int g[N];
#define num(x) ((x) <= sq ? i1[x] : i2[n / (x)])
int sp[N];
void build() {
sq = sqrt(n); sieve(sq);
for(int i = 1, j; i <= n; i = j + 1) {
j = n / (n / i);
w[++ w0] = n / i;
if(w[w0] <= sq) i1[w[w0]] = w0; else i2[i] = w0;
g[w0] = w[w0] - 1;
}
fo(j, 1, p0) for(int i = 1; p[j] * p[j] <= w[i] && i <= w0; i ++) {
int k = num(w[i] / p[j]);
g[i] -= (g[k] - (j - 1));
}
int l = 0;
fd(i, w0, 1) {
while(l < d0 && d[l + 1] <= w[i]) l ++;
g[i] -= l;
}
fo(i, 1, w0) g[i] = -g[i];
fo(i, 1, p0) sp[i] = sp[i - 1] - (k % p[i] != 0);
for(int j = p0; j >= 1; j --) if(k % p[j]) for(int i = 1; p[j] * p[j] <= w[i] && i <= w0; i ++) {
int k = num(w[i] / p[j]);
g[i] += (g[k] - sp[j]) * -1;
}
fo(i, 1, w0) g[i] ++;
}
ll q1(int x) {
return g[num(x)];
}
}
using m25 :: q1;
namespace m26 {
const int N = 2e5 + 5;
int n, sq;
int w[N], w0, i1[N], i2[N];
int p[N], p0, bz[N];
void sieve(int n) {
fo(i, 2, n) {
if(!bz[i]) p[++ p0] = i;
for(int j = 1; i * p[j] <= n; j ++) {
int k = i * p[j];
bz[k] = 1; if(i % p[j] == 0) break;
}
}
}
int g[N];
#define num(x) ((x) <= sq ? i1[x] : i2[n / (x)])
int sp[N];
void build() {
sq = sqrt(n); sieve(sq);
for(int i = 1, j; i <= n; i = j + 1) {
j = n / (n / i);
w[++ w0] = n / i;
if(w[w0] <= sq) i1[w[w0]] = w0; else i2[i] = w0;
g[w0] = w[w0] - 1;
}
fo(j, 1, p0) for(int i = 1; p[j] * p[j] <= w[i] && i <= w0; i ++) {
int k = num(w[i] / p[j]);
g[i] -= (g[k] - (j - 1));
}
int l = 0;
fd(i, w0, 1) {
while(l < d0 && d[l + 1] <= w[i]) l ++;
g[i] -= l;
}
fo(i, 1, w0) g[i] = -g[i];
fo(i, 1, p0) sp[i] = sp[i - 1] - (k % p[i] != 0);
for(int j = p0; j >= 1; j --) if(k % p[j]) for(int i = 1; p[j] * p[j] <= w[i] && i <= w0; i ++) {
int k = num(w[i] / p[j]);
g[i] += (g[k] - sp[j]) * -1;
}
fo(i, 1, w0) g[i] ++;
}
ll q2(int x) {
return g[num(x)];
}
}
using m26 :: q2;
int n, m;
struct P {
int x, y;
} t[1024]; int t0;
void dg(int x, int y, int z) {
if(x > d0) {
t[++ t0] = (P) {y, z};
return;
}
dg(x + 1, y, z);
dg(x + 1, y * d[x], -z);
}
int cmp(P a, P b) { return a.x < b.x;}
void query() {
ll ans = 0;
int lc = 0, c = 0;
for(int i = 1, j; i <= min(n, m); i = j + 1) {
int m1 = n / (n / i), m2 = m / (m / i);
if(m1 < m2) {
j = m1, c = 0;
} else {
j = m2, c = 1;
}
ll s = !c ? q1(j) : q2(j);
if(i > 1) s -= !lc ? q1(i - 1) : q2(i - 1);
lc = c;
ll s2 = 0;
fo(u, 1, t0) if(t[u].x <= m / i) s2 += t[u].y * (m / i / t[u].x);
ans += s * (n / i) * s2;
}
pp("%lld", ans);
}
int main() {
scanf("%d %d %d", &n, &m, &k);
fen(k);
m25 :: n = n;
m25 :: build();
m26 :: n = m;
m26 :: build();
dg(1, 1, 1);
sort(t + 1, t + t0 + 1, cmp);
query();
}
转载注意标注出处:
转自Cold_Chair的博客+原博客地址