LOJ #6538. 烷基计数 加强版 加强版(生成函数,burnside引理,多项式牛顿迭代)

传送门.

不妨设\(A(x)\)表示答案。

对于一个点,考虑它的三个子节点,直接卷起来是\(A(x)^3\),但是这样肯定会计重,因为我们要的是无序的子节点。

那么用burnside引理,枚举一个排列,一个环的选择要相同,如果环的大小是y,则对应\(A(x^y)\)

最后可以得到:
\(A(x)=x{A(x)^3+3A(x^2)A(x)+2A(x^3)\over 6}+1\)

分治NTT可以解这个方程,不过因为有3次的,比较复杂,考虑用牛顿迭代:
\(F(A(x))=x{A(x)^3+3A(x^2)A(x)+2A(x^3)\over 6}+1-A(x)=0\)

\(new A(x)=A(x)-{F(A(x))\over F(A(x))'}\)

问题在于\(F(A(x))\)中有\(A(x^2)、A(x^3)、x\)这样的项,如何求导。

注意牛顿迭代的倍增中,已经求出了\(mod~x^{n/2}\)的答案,那么\(A(x^2)、A(x^3)、x\)是已知的,可以视作常数。

所以\(F(A(x))'=x{3A(x)^2 + 3A(x^2)\over 6} - 1\)

Code:

#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
#define ff(i, x, y) for(int i = x, B = y; i <  B; i ++)
#define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
#define ll long long
#define pp printf
#define hh pp("\n")
using namespace std;

const int mo = 998244353;

ll ksm(ll x, ll y) {
	ll s = 1;
	for(; y; y /= 2, x = x * x % mo)
		if(y & 1) s = s * x % mo;
	return s;
}

typedef vector<ll> V;
#define pb push_back
#define si size()
#define re resize

namespace ntt {
const int nm = 1 << 18;
int r[nm]; ll w[nm], a[nm];
void build() {
	for(int n = 1; n < nm; n *= 2) {
		ll v = ksm(3, (mo - 1) / 2 / n)	;
		w[n] = 1;
		ff(i, 1, n) w[n + i] = w[n + i - 1] * v % mo;
	}
}
void dft(V &c, int f) {
	int n = c.si;
	ff(i, 0, n) a[i] = c[i];
	ff(i, 0, n) {
		r[i] = r[i / 2] / 2 + (i & 1) * n / 2;
		if(i < r[i]) swap(a[i], a[r[i]]);
	} ll b;
	for(int i = 1; i < n; i *= 2) for(int j = 0; j < n; j += 2 * i) ff(k, 0, i)
		b = a[i + j + k] * w[i + k], a[i + j + k] = (a[j + k] - b) % mo, a[j + k] = (a[j + k] + b) % mo;
	if(f == -1) {
		reverse(a + 1, a + n);
		b = ksm(n, mo - 2);
		ff(i, 0, n) a[i] = (a[i] + mo) * b % mo;
	}
	ff(i, 0, n) c[i] = a[i];
}
}
using ntt :: dft;

V operator *(V a, V b) {
	int n0 = a.si + b.si - 1, n = 1;
	while(n < n0) n *= 2;
	a.re(n); b.re(n);
	dft(a, 1); dft(b, 1);
	ff(i, 0, n) a[i] = a[i] * b[i] % mo;
	dft(a, -1);
	a.re(n0); return a;
}

V operator +(V a, V b) {
	a.re(max(a.si, b.si));
	ff(i, 0, b.si) a[i] = (a[i] + b[i]) % mo;
	return a;
}

V operator -(V a, V b) {
	a.re(max(a.si, b.si));
	ff(i, 0, b.si) a[i] = (a[i] - b[i] + mo) % mo;
	return a;
}

V operator * (V a, int b) {
	ff(i, 0, a.si) a[i] = a[i] * b % mo;
	return a;
}

V qni(V a) {
	V b; b.resize(1); b[0] = ksm(a[0], mo - 2);
	for(int n = 2; n < a.si * 2; n *= 2) {
		V c = a; c.re(n); c.re(2 * n);
		V d = b; b.re(2 * n); d.re(n);
		dft(b, 1); dft(c, 1);
		ff(i, 0, b.si) b[i] = b[i] * b[i] % mo * c[i] % mo;
		dft(b, -1); b.re(n);
		ff(i, 0, n) b[i] = (2 * d[i] - b[i] + mo) % mo;
	}
	b.re(a.si); return b;
}

V yy(V a) {
	a.insert(a.begin(), 0);
	return a;
}
V stay(V a, int y, int n) {
	V b; b.resize(n);
	int mx = a.si - 1; mx = min(mx, (n - 1) / y);
	fo(i, 0, mx) b[i * y] = a[i];
	return b;
}

const ll ni6 = ksm(6, mo - 2);

V newton(int n0) {
	V b; b.re(1); b[0] = 1;
	for(int n = 2; n <= n0 * 2; n *= 2) {
		V c = b * b * b + stay(b, 2, n) * b * 3 + stay(b, 3, n) * 2;
		c = yy(c * ni6); c.re(n);
		c[0] ++; c = c - b;
		V d = b * b * 3 + stay(b, 2, n) * 3;
		d = yy(d * ni6); d[0] --; d.re(n);
		b = b - c * qni(d); b.re(n);
	}
	return b;
}

int n;


int main() {
	ntt :: build();
	scanf("%d", &n);
	V a = newton(n);
	pp("%lld\n", a[n]);
}
posted @ 2019-08-14 10:36  Cold_Chair  阅读(762)  评论(0编辑  收藏  举报