openMP + cuda 实现多GPU编程
#include <omp.h> #include <stdio.h> // stdio functions are used since C++ streams aren't necessarily thread safe // a simple kernel that simply increments each array element by b __global__ void kernelAddConstant(int *g_a, const int b) { int idx = blockIdx.x * blockDim.x + threadIdx.x; g_a[idx] += b; } // a predicate that checks whether each array elemen is set to its index plus b int correctResult(int *data, const int n, const int b) { for(int i = 0; i < n; i++) if(data[i] != i + b) return 0; return 1; } int main(int argc, char *argv[]) { int num_gpus = 0; // number of CUDA GPUs ///////////////////////////////////////////////////////////////// // determine the number of CUDA capable GPUs // cudaGetDeviceCount(&num_gpus); if(num_gpus < 1) { printf("no CUDA capable devices were detected\n"); return 1; } ///////////////////////////////////////////////////////////////// // display CPU and GPU configuration // printf("number of host CPUs:\t%d\n", omp_get_num_procs()); printf("number of CUDA devices:\t%d\n", num_gpus); for(int i = 0; i < num_gpus; i++) { cudaDeviceProp dprop; cudaGetDeviceProperties(&dprop, i); printf(" %d: %s\n", i, dprop.name); } printf("---------------------------\n"); ///////////////////////////////////////////////////////////////// // initialize data // unsigned int n = num_gpus * 8192; unsigned int nbytes = n * sizeof(int); int *a = 0; // pointer to data on the CPU int b = 3; // value by which the array is incremented a = (int*)malloc(nbytes); if(0 == a) { printf("couldn't allocate CPU memory\n"); return 1; } for(unsigned int i = 0; i < n; i++) a[i] = i; //////////////////////////////////////////////////////////////// // run as many CPU threads as there are CUDA devices // each CPU thread controls a different device, processing its // portion of the data. It's possible to use more CPU threads // than there are CUDA devices, in which case several CPU // threads will be allocating resources and launching kernels // on the same device. For example, try omp_set_num_threads(2*num_gpus); // Recall that all variables declared inside an "omp parallel" scope are // local to each CPU thread // omp_set_num_threads(num_gpus); // create as many CPU threads as there are CUDA devices //omp_set_num_threads(2*num_gpus);// create twice as many CPU threads as there are CUDA devices #pragma omp parallel { unsigned int cpu_thread_id = omp_get_thread_num(); unsigned int num_cpu_threads = omp_get_num_threads(); // set and check the CUDA device for this CPU thread int gpu_id = -1; cudaSetDevice(cpu_thread_id % num_gpus); // "% num_gpus" allows more CPU threads than GPU devices cudaGetDevice(&gpu_id); printf("CPU thread %d (of %d) uses CUDA device %d\n", cpu_thread_id, num_cpu_threads, gpu_id); int *d_a = 0; // pointer to memory on the device associated with this CPU thread int *sub_a = a + cpu_thread_id * n / num_cpu_threads; // pointer to this CPU thread's portion of data unsigned int nbytes_per_kernel = nbytes / num_cpu_threads; dim3 gpu_threads(128); // 128 threads per block dim3 gpu_blocks(n / (gpu_threads.x * num_cpu_threads)); cudaMalloc((void**)&d_a, nbytes_per_kernel); cudaMemset(d_a, 0, nbytes_per_kernel); cudaMemcpy(d_a, sub_a, nbytes_per_kernel, cudaMemcpyHostToDevice); kernelAddConstant<<<gpu_blocks, gpu_threads>>>(d_a, b); cudaMemcpy(sub_a, d_a, nbytes_per_kernel, cudaMemcpyDeviceToHost); cudaFree(d_a); } printf("---------------------------\n"); if(cudaSuccess != cudaGetLastError()) printf("%s\n", cudaGetErrorString(cudaGetLastError())); //////////////////////////////////////////////////////////////// // check the result // if(correctResult(a, n, b)) printf("Test PASSED\n"); else printf("Test FAILED\n"); free(a); // free CPU memory cudaThreadExit(); return 0; }