翻译:《实用的Python编程》06_01_Iteration_protocol
目录 | 上一节 (5.2 封装) | 下一节 (6.2 自定义迭代)
6.1 迭代协议
本节将探究迭代的底层过程。
迭代无处不在
许多对象都支持迭代:
a = 'hello'
for c in a: # Loop over characters in a
...
b = { 'name': 'Dave', 'password':'foo'}
for k in b: # Loop over keys in dictionary
...
c = [1,2,3,4]
for i in c: # Loop over items in a list/tuple
...
f = open('foo.txt')
for x in f: # Loop over lines in a file
...
迭代:协议
考虑以下 for
语句:
for x in obj:
# statements
for
语句的背后发生了什么?
_iter = obj.__iter__() # Get iterator object
while True:
try:
x = _iter.__next__() # Get next item
# statements ...
except StopIteration: # No more items
break
所有可应用于 for-loop
的对象都实现了上述底层迭代协议。
示例:手动迭代一个列表。
>>> x = [1,2,3]
>>> it = x.__iter__()
>>> it
<listiterator object at 0x590b0>
>>> it.__next__()
1
>>> it.__next__()
2
>>> it.__next__()
3
>>> it.__next__()
Traceback (most recent call last):
File "<stdin>", line 1, in ? StopIteration
>>>
支持迭代
如果想要将迭代添加到自己的对象中,那么了解迭代非常有用。例如:自定义容器。
class Portfolio:
def __init__(self):
self.holdings = []
def __iter__(self):
return self.holdings.__iter__()
...
port = Portfolio()
for s in port:
...
练习
练习 6.1:迭代演示
创建以下列表:
a = [1,9,4,25,16]
请手动迭代该列表:先调用 __iter__()
方法获取一个迭代器,然后调用 __next__()
方法获取下一个元素。
>>> i = a.__iter__()
>>> i
<listiterator object at 0x64c10>
>>> i.__next__()
1
>>> i.__next__()
9
>>> i.__next__()
4
>>> i.__next__()
25
>>> i.__next__()
16
>>> i.__next__()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>>
内置函数 next()
是调用迭代器的 __next__()
方法的快捷方式。尝试在一个文件对象上使用 next()
方法:
>>> f = open('Data/portfolio.csv')
>>> f.__iter__() # Note: This returns the file itself
<_io.TextIOWrapper name='Data/portfolio.csv' mode='r' encoding='UTF-8'>
>>> next(f)
'name,shares,price\n'
>>> next(f)
'"AA",100,32.20\n'
>>> next(f)
'"IBM",50,91.10\n'
>>>
持续调用 next(f)
,直到文件末尾。观察会发生什么。
练习 6.2:支持迭代
有时候,你可能想要使自己的类对象支持迭代——尤其是你的类对象封装了已有的列表或者其它可迭代对象时。请在新的 portfolio.py
文件中定义如下类:
# portfolio.py
class Portfolio:
def __init__(self, holdings):
self._holdings = holdings
@property
def total_cost(self):
return sum([s.cost for s in self._holdings])
def tabulate_shares(self):
from collections import Counter
total_shares = Counter()
for s in self._holdings:
total_shares[s.name] += s.shares
return total_shares
Portfolio 类封装了一个列表,同时拥有一些方法,如: total_cost
property。请修改 report.py
文件中的 read_portfolio()
函数,以便 read_portfolio()
函数能够像下面这样创建 Portfolio
类的实例:
# report.py
...
import fileparse
from stock import Stock
from portfolio import Portfolio
def read_portfolio(filename):
'''
Read a stock portfolio file into a list of dictionaries with keys
name, shares, and price.
'''
with open(filename) as file:
portdicts = fileparse.parse_csv(file,
select=['name','shares','price'],
types=[str,int,float])
portfolio = [ Stock(d['name'], d['shares'], d['price']) for d in portdicts ]
return Portfolio(portfolio)
...
接着运行 report.py
程序。你会发现程序运行失败,原因很明显,因为 Portfolio
的实例不是可迭代对象。
>>> import report
>>> report.portfolio_report('Data/portfolio.csv', 'Data/prices.csv')
... crashes ...
可以通过修改 Portfolio
类,使 Portfolio
类支持迭代来解决此问题:
class Portfolio:
def __init__(self, holdings):
self._holdings = holdings
def __iter__(self):
return self._holdings.__iter__()
@property
def total_cost(self):
return sum([s.shares*s.price for s in self._holdings])
def tabulate_shares(self):
from collections import Counter
total_shares = Counter()
for s in self._holdings:
total_shares[s.name] += s.shares
return total_shares
修改完成后, report.py
程序应该能够再次正常运行。同时,请修改 pcost.py
程序,以便能够像下面这样使用新的 Portfolio
对象:
# pcost.py
import report
def portfolio_cost(filename):
'''
Computes the total cost (shares*price) of a portfolio file
'''
portfolio = report.read_portfolio(filename)
return portfolio.total_cost
...
对 pcost.py
程序进行测试并确保其能正常工作:
>>> import pcost
>>> pcost.portfolio_cost('Data/portfolio.csv')
44671.15
>>>
练习 6.3:创建一个更合适的容器
通常,我们创建一个容器类时,不仅希望该类能够迭代,同时也希望该类能够具有一些其它用途。请修改 Portfolio
类,使其具有以下这些特殊方法:
class Portfolio:
def __init__(self, holdings):
self._holdings = holdings
def __iter__(self):
return self._holdings.__iter__()
def __len__(self):
return len(self._holdings)
def __getitem__(self, index):
return self._holdings[index]
def __contains__(self, name):
return any([s.name == name for s in self._holdings])
@property
def total_cost(self):
return sum([s.shares*s.price for s in self._holdings])
def tabulate_shares(self):
from collections import Counter
total_shares = Counter()
for s in self._holdings:
total_shares[s.name] += s.shares
return total_shares
现在,使用 Portfolio
类进行一些实验:
>>> import report
>>> portfolio = report.read_portfolio('Data/portfolio.csv')
>>> len(portfolio)
7
>>> portfolio[0]
Stock('AA', 100, 32.2)
>>> portfolio[1]
Stock('IBM', 50, 91.1)
>>> portfolio[0:3]
[Stock('AA', 100, 32.2), Stock('IBM', 50, 91.1), Stock('CAT', 150, 83.44)]
>>> 'IBM' in portfolio
True
>>> 'AAPL' in portfolio
False
>>>
有关上述代码的一个重要发现——通常,如果一段代码和 Python 的其它代码"类似(speaks the common vocabulary of how other parts of Python normally work)",那么该代码被认为是 “Pythonic” 的。同理,对于容器对象,其重要组成部分应该包括:支持迭代、可以进行索引、对所包含的元素进行判断,以及其它操作等等。