随笔分类 - Caffe
摘要:caffe的运行提供三种接口:C++接口(命令行)、Python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两种接口。 caffe的C++主程序(caffe.cpp)放在根目录下的tools文件夹内,当然还有一些其它的功能文件,如:convert_imageset.cpp,tr
阅读全文
摘要:solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为 #caffe train --solver=*_solver.prototxt 在Deep Learning中,往往loss function是非凸的,没有解析解
阅读全文
摘要:深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描
阅读全文
摘要:本文讲解一些其它的常用层,包括:softmax-loss层,Inner Product层,accuracy层,reshape层和dropout层及它们的参数配置。 1、softmax-loss softmax-loss层和softmax层计算大致是相同的。softmax是一个分类器,计算的是类别的概
阅读全文
摘要:在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。 输入:n*c*h*w 输出:n*c*h*w 常用的激活函数有sigmoi
阅读全文
摘要:本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。 1、Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层。 层类型:Convol
阅读全文
摘要:要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等,而一个模型由多个层(layer)构成,每一层又由许多参数组成。所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写。 层有很多种类型,比如D
阅读全文
摘要:之前已经配置过一次caffe环境了: Caffe初试(一)win7_64bit+VS2013+Opencv2.4.10+CUDA6.5配置Caffe环境 但其中也提到,编译时,用到了cuda6.5,但是实际训练时,使用GPU训练,又会出现问题。所以强迫症使然,我决定另外配置一个cpu_only的版本
阅读全文
摘要:由于我涉及一个车牌识别系统的项目,计划使用深度学习库caffe对车牌字符进行识别。刚开始接触caffe,打算先将示例中的每个网络模型都拿出来用用,当然这样暴力的使用是不会有好结果的- -||| ,所以这里只是记录一下示例的网络模型使用的步骤,最终测试的准确率就暂且不论了! 一、图片数据库 来源 我使
阅读全文
摘要:1、报错:“db_lmdb.hpp:14] Check failed:mdb_status ==0(112 vs.0)磁盘空间不足。” 这问题是由于lmdb在windows下无法使用lmdb的库,所以要改成leveldb。 但是要注意:由于backend默认的是lmdb,所以你每一次用到生成的图片l
阅读全文
摘要:一、mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集。mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist
阅读全文
摘要:折腾了几天,终于在windows系统上成功配置了Caffe环境,期间遇到了很多问题,每个问题的解决也都花了不少时间,查过挺多资料,感觉挺有意义,这里写篇博客记录一下。 原来我使用的CUDA版本是7.5,参照win7环境下CUDA7.5的安装、配置与测试(VS2010) 辛辛苦苦编译生成了caffe.
阅读全文