24_二叉搜索树中的搜索
1.01_设计一个有getMin功能的栈2.02_由两个栈组成的队列3.03_如何仅用递归函数和栈操作逆序一个栈4.04_猫狗队列5.05_用一个栈实现另一个栈的排序6.06_用栈来求解汉诺塔问题7.07_用队列实现栈8.09_删除字符串中的所有相邻重复项9.08_ 有效的括号10.10_逆波兰表达式求值11.11_滑动窗口最大值12.12_前K个高频元素13.01_移除链表元素14.02_设计链表15.03_反转链表16.04_两两交换链表中的节点17.05_删除链表的倒数第N个节点18.06_链表相交19.07_环形链表20.01_二叉树的递归遍历21.二叉树理论基础22.02_二叉树的迭代遍历23.04_二叉树的层序遍历24.05_二叉树的层次遍历II25.06_二叉树的右视图26.07_二叉树的层平均值27.08_N叉树的层序遍历28.09_每个行中找最大值29.10_填充每个节点的下一个右侧节点指针30.11_二叉树的最大深度31.12_二叉树的最小深度32.13_翻转二叉树33.14_对称二叉树34.15_完全二叉树的节点个数35.16_平衡二叉树36.17_二叉树的所有路径37.18_左叶子之和38.19_找树左下角的值39.20_路径总和40.21_从中序与后序遍历序列构造二叉树41.22_最大二叉树42.23_合并二叉树
43.24_二叉搜索树中的搜索
44.27_二叉搜索树的众数45.28_二叉树的最近公共祖先46.29_二叉搜索树中的插入操作47.30_删除二叉搜索树中的节点48.31_修剪二叉搜索树49.32_将有序数组转换为平衡二叉搜索树50.33_把二叉搜索树转换为累加树51.动态规划理论52.01_斐波那契数列53.02_爬楼梯54.03_使用最小花费爬楼梯55.04_不同路径56.05_不同路径2(带障碍物版)57.06_整数拆分58.08_杨辉三角59.10_最后一块石头的重量60.09_分割等和子集61.74_搜索二维矩阵700. 二叉搜索树中的搜索
给定二叉搜索树(BST)的根节点 root
和一个整数值 val
。
你需要在 BST 中找到节点值等于 val
的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null
。
示例 1:

输入:root = [4,2,7,1,3], val = 2
输出:[2,1,3]
示例 2:

输入:root = [4,2,7,1,3], val = 5
输出:[]
【思路】
二叉搜索树是一个有序树:
- 若它的左子树不空,则左子树上所有节点的值小于它的根节点的值;
- 若它的右子树不空,则右子树上所有节点的值大于它的根节点的值;
- 它的左、右子树也分别是一颗二叉搜索树
递归法
1、确定递归函数的参数和返回值
递归函数的参数传入的是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。
TreeNode searchBST(TreeNode root, int val);
2、确定终止条件
如果root为空,或者找到了这个数值了,就返回root节点。
if (root == null || root.val == val) return root;
3、确定单层递归的逻辑
TreeNode result = null;
if (root.val < val) result = searchBST(root.right, val);
if (root.val > val) rersult = searchBST(root.left, val);
return result;
整体代码如下:
class Solution {
// 递归,利用二叉搜索树特点,优化
public TreeNode searchBST(TreeNode root, int val) {
if (root == null || root.val == val) {
return root;
}
if (val < root.val) {
return searchBST(root.left, val);
} else {
return searchBST(root.right, val);
}
}
}
迭代法
一提到二叉树遍历的迭代法,可能立刻想起使用栈来模拟深度遍历,使用队列来模拟广度遍历。
对于二叉搜索树是不一样的,因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。
对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要掉头,在走右分支。
而对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。例如要搜索元素为3的节点,我们不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了。
class Solution {
TreeNode searchBST(TreeNode root, int val) {
while (root != null) {
if (root.val > val) root = root.left;
else if (root.val < val) root = root.right;
else return root;
}
return null;
}
}
总结
本篇我们介绍了二叉搜索树的遍历方式,因为二叉搜索树的有序性,遍历的时候要比普通二叉树简单很多。
但是一些同学很容易忽略二叉搜索树的特性,所以写出遍历的代码就未必真的简单了。
所以针对二叉搜索树的题目,一样要利用其特性。
文中我依然给出递归和迭代两种方式,可以看出写法都非常简单,就是利用了二叉搜索树有序的特点。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 25岁的心里话