[剑指Offer]59-队列的最大值(题目二待补)

题目一:滑动窗口的最大值

题目链接

https://www.nowcoder.com/practice/1624bc35a45c42c0bc17d17fa0cba788?tpId=13&tqId=11217&tPage=4&rp=4&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking

题目描述

给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}

思路

总体思路:滑动窗口满足先进先出,可看作队列。因为两端都有pop操作,所以采用双端队列。
原则:
对于新来的元素m,将其与双端队列中的所有元素比较:
- 比m小的x,直接移出队列(因为不再能成为后面滑动窗口的最大值了。)
- 比m大的x,将两者下标差+1与滑动窗口大小比较,判断x是否已不再窗口内,若不在了,则直接移出队列。
经前面的操作,此时队列的第一个元素是滑动窗口的最大值。

由于上面的规则,队列中始终是由大至小的,所以上面两个移出操作分别从双端队列两端至内pop即可,这是采用双端队列的原因

时间复杂度O(n)。PS:暴力方法时间复杂度O(nk),其中k为滑动窗口大小。

其他思路

将滑动窗口看作队列,即是求队列的最大值问题。由于可以用O(1)得到栈的最大值,且可以用两个栈实现一个队列,所以也可以用O(1)的时间得到队列的最大值,故总时间复杂度降到了O(n)。但相比上面的方法,实现更复杂一些。

采用双端队列代码

class Solution {
public:
	vector<int> maxInWindows(const vector<int>& num, unsigned int size)
	{
		vector<int> windowMax;
		deque<int> dq;
		if (num.size() != 0 && size <= num.size()) {
			for (size_t numIndex = 0;numIndex < num.size();++numIndex) {//每个元素
				while (!dq.empty()&&num[dq.back()]<=num[numIndex]) {
					dq.pop_back();
				}
				while (!dq.empty() && numIndex - dq.front() + 1 > size) {
					dq.pop_front();
				}
				dq.push_back(numIndex);
				if (numIndex >= size - 1) {
					windowMax.push_back(num[dq.front()]);
				}
			}
		}
		return windowMax;
	}
};

posted on 2019-03-04 21:05  coding_gaga  阅读(154)  评论(0编辑  收藏  举报

导航