516. Longest Palindromic Subsequence
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.
Example 1:
Input:
"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".
Example 2:
Input:
"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".
本题应该使用DP的方法来做,先考虑DP是需要用数组来保存数据还是一个整型来保存数据,注意本题的特点,本题是考察回文,因此需要左端点和右端点,因此需要用到二维数组来解决问题。然后考虑状态方程,考虑到:if(charAt(i)==charAt(j)) dp[i][j] = dp[i+1][j-1]+2;如果不相等,则取比他范围小的回文最大子字符串,即:dp[i][j] = Math.max(dp[i+1][j],dp[i][j-1]);最后考虑初值情况,本题初值是dp[i][i] = 1;可以作为已知,代码如下:
1 public class Solution { 2 public int longestPalindromeSubseq(String s) { 3 int[][] dp = new int[s.length()][s.length()]; 4 for(int i=0;i<s.length();i++){ 5 dp[i][i] = 1; 6 for(int j=i-1;j>=0;j--){ 7 if(s.charAt(i)==s.charAt(j)){ 8 dp[j][i] = dp[j+1][i-1]+2; 9 }else{ 10 dp[j][i] = Math.max(dp[j][i-1],dp[j+1][i]); 11 } 12 } 13 } 14 return dp[0][s.length()-1]; 15 } 16 }
DP还可以使用自顶向下来做,代码如下:
1 public class Solution { 2 public int longestPalindromeSubseq(String s) { 3 return helper(s,0,s.length()-1,new Integer[s.length()][s.length()]); 4 } 5 public int helper(String s,int start,int end,Integer[][] dp){ 6 if(dp[start][end]!=null) return dp[start][end]; 7 if(start>end) return 0; 8 if(start==end) return 1; 9 if(s.charAt(start)==s.charAt(end)){ 10 dp[start][end] = helper(s,start+1,end-1,dp)+2; 11 }else{ 12 dp[start][end] = Math.max(helper(s,start+1,end,dp),helper(s,start,end-1,dp)); 13 } 14 return dp[start][end]; 15 } 16 }