62. Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

本题也是采用的动态规划问题来解决,和triangle不太一样的是,推理的过程从小向大推比较容易,而triangle推理的过程是从大往小推,由此可知动态规划有自顶向下和自底向上两种方法,解题过程不难,代码如下:

 1 public class Solution {
 2     public int uniquePaths(int m, int n) {
 3         int[][] dp = new int[m][n];
 4         for(int i=0;i<m;i++){
 5             dp[i][n-1] = 1;
 6         }
 7         for(int i=0;i<n;i++){
 8             dp[m-1][i] = 1;
 9         }
10         for(int i=m-2;i>=0;i--){
11             for(int j=n-2;j>=0;j--){
12                 dp[i][j] = dp[i][j+1]+dp[i+1][j];
13             }
14         }
15         return dp[0][0];
16     }
17 }

 

posted @ 2017-02-10 09:10  CodesKiller  阅读(112)  评论(0编辑  收藏  举报