62. Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
本题也是采用的动态规划问题来解决,和triangle不太一样的是,推理的过程从小向大推比较容易,而triangle推理的过程是从大往小推,由此可知动态规划有自顶向下和自底向上两种方法,解题过程不难,代码如下:
1 public class Solution { 2 public int uniquePaths(int m, int n) { 3 int[][] dp = new int[m][n]; 4 for(int i=0;i<m;i++){ 5 dp[i][n-1] = 1; 6 } 7 for(int i=0;i<n;i++){ 8 dp[m-1][i] = 1; 9 } 10 for(int i=m-2;i>=0;i--){ 11 for(int j=n-2;j>=0;j--){ 12 dp[i][j] = dp[i][j+1]+dp[i+1][j]; 13 } 14 } 15 return dp[0][0]; 16 } 17 }