454. 4Sum II
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l)
there are such that A[i] + B[j] + C[k] + D[l]
is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] Output: 2 Explanation: The two tuples are: 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
此题本来以为是按照four sum的思路来做的,即先将四个数组排好序,然后两个for循环分别循环A,B数组,再用两个指针分别指向C的low和D的high,但是发现得到的数字比期待的数字少,测试用例如下:
Input:[0,1,-1] [-1,1,0] [0,0,1] [-1,1,1]
Output:12
Expected:17
后来思考了一下,发现这么做确实不可以,后两个数组每次都不能遍历完所有可能结果,由此可以推断出来,两个数组里面想用two pointer来全部遍历是无法做到的,除非刚好一个数组的最大值等于或者小于另一个数组的最小值。代码如下:
public class Solution {
public int fourSumCount(int[] A, int[] B, int[] C, int[] D) {
int n =A.length;
Arrays.sort(A);
Arrays.sort(B);
Arrays.sort(C);
Arrays.sort(D);
int count = 0;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
int low = 0,high = n-1;
while(low<n&&high>=0){
int sum = A[i]+B[j]+C[low]+D[high];
if(sum==0){
count++;
low++;
}else if(sum<0){
low++;
}else{
high--;
}
}
}
}
return count;
}
}
看了大神的做法,用了hashmap来做,key保存两个数组的和,value保存出现该和的个数,然后如果另外两个数组的和等于这个hashmap的-key,就加上value的值。
public class Solution {
public int fourSumCount(int[] A, int[] B, int[] C, int[] D) {
Map<Integer,Integer> map = new HashMap<Integer,Integer>();
int n = A.length;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
map.put(A[i]+B[j],map.getOrDefault(A[i]+B[j],0)+1);
}
}
int count = 0;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
count+=map.getOrDefault(-C[i]-D[j],0);
}
}
return count;
}
}
这里面Object getOrDefault(Object key, Object defaultValue),表示返回map键对应的map值,如果不存在map键,返回默认值。