数据增广

在介绍数据增广前,我们先了解一个有趣的故事

CES上的真实故事

img
在某一年的CES展会上,有一家做智能售货机的公司,发现他们的演示机器在现场效果很差,因为现场

  • 不同的色温
  • 桌面的灯光反射不一样

为了解决这个问题,他们连夜现场收集了数据,训练了一个新的模型,同时买了一块新桌布,才解决了这个问题。

数据增广的概念

上面的这个例子体现了数据增广的重要性。数据增广是指对原始数据进行一系列的变换,从而扩充训练数据集,提高模型的泛化能力。

数据增广的主要方法有:

  • 旋转:将图像旋转一定角度,增加数据集的多样性。
  • 裁剪:裁剪图像中的一部分,增加数据集的多样性。
  • 缩放:将图像缩放到不同的尺寸,增加数据集的多样性。
  • 翻转:将图像水平或垂直翻转,增加数据集的多样性。
  • 加噪声:在图像中加入随机噪声,增加数据集的多样性。
  • 颜色变换:改变图像的颜色,增加数据集的多样性。

数据增广的目的就是为了增加模型的泛化能力,提高模型的鲁棒性。

posted @   codersgl  阅读(31)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
点击右上角即可分享
微信分享提示