汇聚层(pooling layer)

通常当我们处理图像时,我们希望逐渐降低隐藏表示的空间分辨率、聚集信息,这样随着我们在神经网络中层叠的上升,每个神经元对其敏感的感受野(输入)就越大。

而我们的机器学习任务通常会跟全局图像的问题有关(例如,“图像是否包含一只猫呢?”),所以我们最后一层的神经元应该对整个输入的全局敏感。通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有优势保留在中间层。

此外,当检测较底层的特征时(比如图像的边缘),我们通常希望这些特征保持某种程度上的平移不变性。例如,如果我们拍摄黑白之间轮廓清晰的图像X,并将整个图像向右移动一个像素,即Z[i, j] = X[i, j + 1],则新图像Z的输出可能大不相同。而在现实中,随着拍摄角度的移动,任何物体几乎不可能发生在同一像素上。即使用三脚架拍摄一个静止的物体,由于快门的移动而引起的相机振动,可能会使所有物体左右移动一个像素(除了高端相机配备了特殊功能来解决这个问题)。

下面将介绍汇聚(pooling)层,它具有双重目的:降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。


最大汇聚和平均汇聚

与卷积层类似,汇聚层运算符由一个固定形状的窗口组成,该窗口根据其步幅大小在输入的所有区域上滑动,为固定形状窗口(有时称为汇聚窗口)遍历的每个位置计算一个输出。 然而,不同于卷积层中的输入与卷积核之间的互相关计算,汇聚层不包含参数。 相反,池运算是确定性的,我们通常计算汇聚窗口中所有元素的最大值或平均值。这些操作分别称为最大汇聚层(maximum pooling)和平均汇聚层(average pooling)。

在这两种情况下,与互相关运算符一样,汇聚窗口从输入张量的左上角开始,从左往右、从上往下的在输入张量内滑动。在汇聚窗口到达的每个位置,它计算该窗口中输入子张量的最大值或平均值。计算最大值或平均值是取决于使用了最大汇聚层还是平均汇聚层。

图中的输出张量的高度为2,宽度为2。这四个元素为每个汇聚窗口中的最大值:

\[\begin{split}\max(0, 1, 3, 4)=4,\\ \max(1, 2, 4, 5)=5,\\ \max(3, 4, 6, 7)=7,\\ \max(4, 5, 7, 8)=8.\\\end{split} \]

汇聚窗口形状为\(p \times q\)的汇聚层称为\(p \times q\)汇聚层,汇聚操作称为\(p \times q\)汇聚。

回到之前提到的对象边缘检测示例,现在我们将使用卷积层的输出作为\(2\times2\)最大汇聚的输入。 设置卷积层输入为X,汇聚层输出为Y。 无论X[i, j]和X[i, j + 1]的值相同与否,或X[i, j + 1]和X[i, j + 2]的值相同与否,汇聚层始终输出Y[i, j] = 1。 也就是说,使用
最大汇聚层,即使在高度或宽度上移动一个元素,卷积层仍然可以识别到模式。

在下面的代码中的pool2d函数,我们实现汇聚层的前向传播。 这类似于之前的corr2d函数。 然而,这里我们没有卷积核,输出为输入中每个区域的最大值或平均值。

import torch
from torch import nn
from d2l import torch as d2l

# 定义一个函数,用于对二维张量进行池化操作
def pool2d(X, pool_size, mode='max'):
    # 获取池化窗口的大小
    p_h, p_w = pool_size
    # 创建一个与输入张量大小相同的零张量
    Y = torch.zeros(X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)
    # 遍历输出张量的每一个元素
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            # 如果模式为最大值池化,则取输入张量中对应窗口的最大值
            if mode == 'max':
                Y[i, j] = X[i:i + p_h, j:j + p_w].max()
            # 如果模式为平均值池化,则取输入张量中对应窗口的平均值
            elif mode == 'avg':
                Y[i, j] = X[i:i + p_h, j:j + p_w].mean()
    # 返回池化后的张量
    return Y

我们可以构建 图中的输入张量X,验证二维最大汇聚层的输出

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
tensor([[4., 5.],
        [7., 8.]])

此外,我们还可以验证平均汇聚层。

pool2d(X, (2, 2), 'avg')
tensor([[2., 3.],
        [5., 6.]])

填充和步幅

与卷积层一样,汇聚层也可以改变输出形状。和以前一样,我们可以通过填充和步幅以获得所需的输出形状。 下面,我们用深度学习框架中内置的二维最大汇聚层,来演示汇聚层中填充和步幅的使用。 我们首先构造了一个输入张量X,它有四个维度,其中样本数和通道数都是1。

X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
X
tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]]]])

默认情况下,深度学习框架中的步幅与汇聚窗口的大小相同。 因此,如果我们使用形状为(3, 3)的汇聚窗口,那么默认情况下,我们得到的步幅形状为(3, 3)。

# 定义一个2D最大池化层,池化窗口大小为3
pool2d = nn.MaxPool2d(3)
# 对输入X进行最大池化操作
pool2d(X)
tensor([[[[10.]]]])

填充和步幅可以手动设定。

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
tensor([[[[ 5.,  7.],
          [13., 15.]]]])

当然,我们可以设定一个任意大小的矩形汇聚窗口,并分别设定填充和步幅的高度和宽度。

pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
tensor([[[[ 5.,  7.],
          [13., 15.]]]])

多个通道

在处理多通道输入数据时,汇聚层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。 这意味着汇聚层的输出通道数与输入通道数相同。 下面,我们将在通道维度上连结张量X和X + 1,以构建具有2个通道的输入

X = torch.cat((X, X + 1), 1)
X
tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]],

         [[ 1.,  2.,  3.,  4.],
          [ 5.,  6.,  7.,  8.],
          [ 9., 10., 11., 12.],
          [13., 14., 15., 16.]]]])

如下所示,汇聚后输出通道的数量仍然是2。

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
tensor([[[[ 5.,  7.],
          [13., 15.]],

         [[ 6.,  8.],
          [14., 16.]]]])

总结

对于给定输入元素,最大汇聚层会输出该窗口内的最大值,平均汇聚层会输出该窗口内的平均值。汇聚层的主要优点之一是减轻卷积层对位置的过度敏感。我们可以指定汇聚层的填充和步幅。使用最大汇聚层以及大于1的步幅,可减少空间维度(如高度和宽度)。汇聚层的输出通道数与输入通道数相同。

posted @ 2024-08-02 14:43  codersgl  阅读(30)  评论(0编辑  收藏  举报