PAT A1066 Root of AVL Tree (25 分)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
实现思路:
AVL平衡二叉树的模板题,记住然后建树返回根节点的值即可,主要是 插入后四种需要调整的情况不详细赘述。
AC代码:
#include <iostream>
#include <cmath>
using namespace std;
struct node {
int data,height;
node *l,*r;
};
int getHeight(node *root) {//获取当前结点的高度
return root==NULL?0:root->height;
}
void updateHeight(node *&root) {//更新当前结点的高度
root->height=max(getHeight(root->l),getHeight(root->r))+1;
}
int getBalanceFac(node *root) {//获取当前父节点的平衡因子
return getHeight(root->l)-getHeight(root->r);
}
void L(node *&root) {
node *temp=root->r;
root->r=temp->l;
temp->l=root;
updateHeight(root);//调整后需要调整子树和父节点的高度
updateHeight(temp);
root=temp;
}
void R(node *&root) {
node *temp=root->l;
root->l=temp->r;
temp->r=root;
updateHeight(root);
updateHeight(temp);
root=temp;
}
void insert(node *&root,int x) {
if(root==NULL) {
root=new node;
root->data=x;
root->height=1;//设置叶结点的高度
root->l=root->r=NULL;
return;
}
if(x<root->data) {
insert(root->l,x);
updateHeight(root);//插入结点后需要进行子树高度调整
if(getBalanceFac(root)==2) {
if(getBalanceFac(root->l)==1) {
R(root);
} else if(getBalanceFac(root->l)==-1) {
L(root->l);
R(root);
}
}
} else {
insert(root->r,x);
updateHeight(root);
if(getBalanceFac(root)==-2) {
if(getBalanceFac(root->r)==-1) {
L(root);
} else if(getBalanceFac(root->r)==1) {
R(root->r);
L(root);
}
}
}
}
int main() {
node *root=NULL;
int n,val;
cin>>n;
while(n--) {
scanf("%d",&val);
insert(root,val);
}
cout<<root->data;
return 0;
}