MySQL实现嵌套集合模型
MySQL实现嵌套集合模型
译文主要是介绍如何用MySQL来存储嵌套集合数据。在其中会增加一些自己的理解,也会删除掉一些自认为无用的废话。
这篇文章主要讲的是嵌套集合模型,所以邻接表不是本文的重点,简单略过就好。
也许这是原文地址,因为我也不知道这是不是原文。
介绍
什么是分层数据?
类似于树形结构,除了根节点和叶子节点外,所有节点都有用一个父节点和多个子节点。
那么,在MySQL中如何处理分层数据呢?
原文中介绍了两种分层结构模型:邻接表模型
和嵌套集合模型
。
邻接表模型(The Adjacency List Model)
首先,建立测试表,导入测试数据,
CREATE TABLE category(
category_id INT AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(20) NOT NULL,
parent INT DEFAULT NULL
);
INSERT INTO category VALUES
(1,'ELECTRONICS',NULL),
(2,'TELEVISIONS',1),
(3,'TUBE',2),
(4,'LCD',2),
(5,'PLASMA',2),
(6,'PORTABLE ELECTRONICS',1),
(7,'MP3 PLAYERS',6),
(8,'FLASH',7),
(9,'CD PLAYERS',6),
(10,'2 WAY RADIOS',6);
SELECT * FROM category ORDER BY category_id;
+-------------+----------------------+--------+
| category_id | name | parent |
+-------------+----------------------+--------+
| 1 | ELECTRONICS | NULL |
| 2 | TELEVISIONS | 1 |
| 3 | TUBE | 2 |
| 4 | LCD | 2 |
| 5 | PLASMA | 2 |
| 6 | PORTABLE ELECTRONICS | 1 |
| 7 | MP3 PLAYERS | 6 |
| 8 | FLASH | 7 |
| 9 | CD PLAYERS | 6 |
| 10 | 2 WAY RADIOS | 6 |
+-------------+----------------------+--------+
10 rows in set (0.00 sec)
在邻接表中,所有的数据均拥有一个Parent字段,用来存储它的父节点。当前节点为根节点的话,它的父节点则为NULL。
那么在遍历的时候,可以使用递归来实现查询整棵树,从根节点开始,不断寻找子节点(父节点->子节点->父节点->子节点)。
检索分层路径
一般需要获取一个分层结构的路径问题,那么
SELECT t1.name AS lev1, t2.name as lev2, t3.name as lev3, t4.name as lev4
FROM category AS t1
LEFT JOIN category AS t2 ON t2.parent = t1.category_id
LEFT JOIN category AS t3 ON t3.parent = t2.category_id
LEFT JOIN category AS t4 ON t4.parent = t3.category_id
WHERE t1.name = 'ELECTRONICS';
+-------------+----------------------+--------------+-------+
| lev1 | lev2 | lev3 | lev4 |
+-------------+----------------------+--------------+-------+
| ELECTRONICS | TELEVISIONS | TUBE | NULL |
| ELECTRONICS | TELEVISIONS | LCD | NULL |
| ELECTRONICS | TELEVISIONS | PLASMA | NULL |
| ELECTRONICS | PORTABLE ELECTRONICS | MP3 PLAYERS | FLASH |
| ELECTRONICS | PORTABLE ELECTRONICS | CD PLAYERS | NULL |
| ELECTRONICS | PORTABLE ELECTRONICS | 2 WAY RADIOS | NULL |
+-------------+----------------------+--------------+-------+
6 rows in set (0.00 sec)
检索叶子节点
SELECT t1.name FROM
category AS t1 LEFT JOIN category as t2
ON t1.category_id = t2.parent
WHERE t2.category_id IS NULL;
+--------------+
| name |
+--------------+
| TUBE |
| LCD |
| PLASMA |
| FLASH |
| CD PLAYERS |
| 2 WAY RADIOS |
+--------------+
检索指定路径
SELECT t1.name AS lev1, t2.name as lev2, t3.name as lev3, t4.name as lev4
FROM category AS t1
LEFT JOIN category AS t2 ON t2.parent = t1.category_id
LEFT JOIN category AS t3 ON t3.parent = t2.category_id
LEFT JOIN category AS t4 ON t4.parent = t3.category_id
WHERE t1.name = 'ELECTRONICS' AND t4.name = 'FLASH';
+-------------+----------------------+-------------+-------+
| lev1 | lev2 | lev3 | lev4 |
+-------------+----------------------+-------------+-------+
| ELECTRONICS | PORTABLE ELECTRONICS | MP3 PLAYERS | FLASH |
+-------------+----------------------+-------------+-------+
1 row in set (0.01 sec)
邻接表的缺点
在检索路径的过程中,除了本层外,每一层都会对应一个LEFT JOIN
,那么如果层数不定怎么办?或者层数过多?
在删除中间层的节点时,需要同时删除该节点下的所有节点,否则会出现孤立节点。
嵌套集合模型Nested Set Model
原文中主要的目的是介绍嵌套集合模型,如下
通过集合的包含关系,嵌套结合模型可以表示分层结构,每一个分层可以用一个Set来表示(一个圈),父节点所在的圈包含所有子节点所在的圈。
为了用MySQL来表示集合关系,需要定义连个字段left
和right
(表示一个集合的范围)。
CREATE TABLE nested_category (
category_id INT AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(20) NOT NULL,
lft INT NOT NULL,
rgt INT NOT NULL
);
INSERT INTO nested_category VALUES
(1,'ELECTRONICS',1,20),
(2,'TELEVISIONS',2,9),
(3,'TUBE',3,4),
(4,'LCD',5,6),
(5,'PLASMA',7,8),
(6,'PORTABLE ELECTRONICS',10,19),
(7,'MP3 PLAYERS',11,14),
(8,'FLASH',12,13),
(9,'CD PLAYERS',15,16),
(10,'2 WAY RADIOS',17,18);
SELECT * FROM nested_category ORDER BY category_id;
+-------------+----------------------+-----+-----+
| category_id | name | lft | rgt |
+-------------+----------------------+-----+-----+
| 1 | ELECTRONICS | 1 | 20 |
| 2 | TELEVISIONS | 2 | 9 |
| 3 | TUBE | 3 | 4 |
| 4 | LCD | 5 | 6 |
| 5 | PLASMA | 7 | 8 |
| 6 | PORTABLE ELECTRONICS | 10 | 19 |
| 7 | MP3 PLAYERS | 11 | 14 |
| 8 | FLASH | 12 | 13 |
| 9 | CD PLAYERS | 15 | 16 |
| 10 | 2 WAY RADIOS | 17 | 18 |
+-------------+----------------------+-----+-----+
由于left
和right
是MySQL的保留字,因此,字段名称用lft和rgt代替。每一个集合都是从lft开始到rgt结束,也就是集合的两个边界。
在树中也同样适用,
当为树状结构编号时,我们从左到右,一次一层,赋值按照从左到右的顺序遍历其子节点,这种方法称为先序遍历算法
。
检索分层路径
由于子节点的lft值总在父节点的lft和rgt值之间,所以可以通过父节点连接到子节点上来检索整棵树。
SELECT node.name
FROM nested_category AS node,
nested_category AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND parent.name = 'ELECTRONICS'
ORDER BY node.lft;
+----------------------+
| name |
+----------------------+
| ELECTRONICS |
| TELEVISIONS |
| TUBE |
| LCD |
| PLASMA |
| PORTABLE ELECTRONICS |
| MP3 PLAYERS |
| FLASH |
| CD PLAYERS |
| 2 WAY RADIOS |
+----------------------+</pre>
这个方法并不需要考虑层数,而且不需要考虑节点的rgt。
检索所有叶子节点
由于每一个叶子节点的rgt=lft+1
,那么只需要这一个条件即可。
SELECT name
FROM nested_category
WHERE rgt = lft + 1;
+--------------+
| name |
+--------------+
| TUBE |
| LCD |
| PLASMA |
| FLASH |
| CD PLAYERS |
| 2 WAY RADIOS |
+--------------+
检索节点路径
不再需要多个join连接操作。
SELECT parent.name
FROM nested_category AS node,
nested_category AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND node.name = 'FLASH'
ORDER BY node.lft;
+----------------------+
| name |
+----------------------+
| ELECTRONICS |
| PORTABLE ELECTRONICS |
| MP3 PLAYERS |
| FLASH |
+----------------------+
检索节点深度
通过COUNT
和GROUP BY
函数来获取父节点的个数。
SELECT node.name, (COUNT(parent.name) - 1) AS depth
FROM nested_category AS node,
nested_category AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
GROUP BY node.name
ORDER BY node.lft;
+----------------------+-------+
| name | depth |
+----------------------+-------+
| ELECTRONICS | 0 |
| TELEVISIONS | 1 |
| TUBE | 2 |
| LCD | 2 |
| PLASMA | 2 |
| PORTABLE ELECTRONICS | 1 |
| MP3 PLAYERS | 2 |
| FLASH | 3 |
| CD PLAYERS | 2 |
| 2 WAY RADIOS | 2 |
+----------------------+-------+
甚至可以得到分层的缩进结果,
SELECT CONCAT( REPEAT(' ', COUNT(parent.name) - 1), node.name) AS name
FROM nested_category AS node,
nested_category AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
GROUP BY node.name
ORDER BY node.lft;
+-----------------------+
| name |
+-----------------------+
| ELECTRONICS |
| TELEVISIONS |
| TUBE |
| LCD |
| PLASMA |
| PORTABLE ELECTRONICS |
| MP3 PLAYERS |
| FLASH |
| CD PLAYERS |
| 2 WAY RADIOS |
+-----------------------+
检索子树的深度
考虑到检索中需要自连接的node或parent,因此需要增加一个额外的连接来作为子查询来限制子树。
SELECT node.name, (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth
FROM nested_category AS node,
nested_category AS parent,
nested_category AS sub_parent,
(
SELECT node.name, (COUNT(parent.name) - 1) AS depth
FROM nested_category AS node,
nested_category AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND node.name = 'PORTABLE ELECTRONICS'
GROUP BY node.name
ORDER BY node.lft
)AS sub_tree
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt
AND sub_parent.name = sub_tree.name
GROUP BY node.name
ORDER BY node.lft;
+----------------------+-------+
| name | depth |
+----------------------+-------+
| PORTABLE ELECTRONICS | 0 |
| MP3 PLAYERS | 1 |
| FLASH | 2 |
| CD PLAYERS | 1 |
| 2 WAY RADIOS | 1 |
+----------------------+-------+
检索节点的直接子节点
假设一个场景,当用户点击网站上电子产品的一个分类时,将呈现该分类下的产品,同时需要列出所有子分类,并不是全部分类。
为了限制显示分类的层数,需要使用HAVING
字句,
SELECT node.name, (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth
FROM nested_category AS node,
nested_category AS parent,
nested_category AS sub_parent,
(
SELECT node.name, (COUNT(parent.name) - 1) AS depth
FROM nested_category AS node,
nested_category AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND node.name = 'PORTABLE ELECTRONICS'
GROUP BY node.name
ORDER BY node.lft
)AS sub_tree
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt
AND sub_parent.name = sub_tree.name
GROUP BY node.name
HAVING depth <= 1
ORDER BY node.lft;
+----------------------+-------+
| name | depth |
+----------------------+-------+
| PORTABLE ELECTRONICS | 0 |
| MP3 PLAYERS | 1 |
| CD PLAYERS | 1 |
| 2 WAY RADIOS | 1 |
+----------------------+-------+
增加新节点
上面已经介绍了如何检索结果,那么如何才能增加新的节点呢?
如果希望在TELEVISIONS和PROTABLE ELECTRONICS节点之间增加一个新的节点,那么新节点的lft和rgt的值应该是10和11,那么所有大于10的节点(新节点右侧的节点)的lft和rgt都应该加2,如上图所示。
LOCK TABLE nested_category WRITE;
SELECT @myRight := rgt FROM nested_category
WHERE name = 'TELEVISIONS';
UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myRight;
UPDATE nested_category SET lft = lft + 2 WHERE lft > @myRight;
INSERT INTO nested_category(name, lft, rgt) VALUES('GAME CONSOLES', @myRight + 1, @myRight + 2);
UNLOCK TABLES
如果希望在叶子节点下增加节点,需要修改下查询语句,
LOCK TABLE nested_category WRITE;
SELECT @myLeft := lft FROM nested_category
WHERE name = '2 WAY RADIOS';
UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myLeft;
UPDATE nested_category SET lft = lft + 2 WHERE lft > @myLeft;
INSERT INTO nested_category(name, lft, rgt) VALUES('FRS', @myLeft + 1, @myLeft + 2);
UNLOCK TABLES;```
###删除节点
删除叶子节点比较容易,只需要删除自己,而删除一个中间层节点就需要删除其所有子节点。在这个模型中,所有子节点的节点正好在lft和rgt之间。
LOCK TABLE nested_category WRITE;
SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1
FROM nested_category
WHERE name = 'GAME CONSOLES';
DELETE FROM nested_category WHERE lft BETWEEN @myLeft AND @myRight;
UPDATE nested_category SET rgt = rgt - @myWidth WHERE rgt > @myRight;
UPDATE nested_category SET lft = lft - @myWidth WHERE lft > @myRight;
UNLOCK TABLES;
在某些情况下,只需要删除某个节点,但是并不希望删除该节点下的子节点数据。
通过把右侧所有节点的左右值-2,当前节点的子节点左右值-1
LOCK TABLE nested_category WRITE;
SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1
FROM nested_category
WHERE name = 'PORTABLE ELECTRONICS';
DELETE FROM nested_category WHERE lft = @myLeft;
UPDATE nested_category SET rgt = rgt - 1, lft = lft - 1 WHERE lft BETWEEN @myLeft AND @myRight;
UPDATE nested_category SET rgt = rgt - 2 WHERE rgt > @myRight;
UPDATE nested_category SET lft = lft - 2 WHERE lft > @myRight;
UNLOCK TABLES;
##最后的思考
原作者推荐了一本名为《Joe Celko's Trees and Hierarchies in SQL for Smarties》的书籍,该书的作者是SQL领域的大神Joe Celko(嵌套几何模型的创造者)。这本书涵盖了本文中未涉及到的一些高级话题。
本文 由 cococo点点 创作,采用 知识共享 署名-非商业性使用-相同方式共享 3.0 中国大陆 许可协议进行许可。欢迎转载,请注明出处:
转载自:cococo点点 http://www.cnblogs.com/coder2012