【numpy&pandas】Pandas速查笔记
numpy和pandas是数据科学领域非常重要的工具
- numpy是c语言写的
- pandas是基于numpy开发的
- 底层有部分会转化为矩阵计算,比普通的一维计算(如list,dict)快很多
导入包
- import pandas as pd
- import numpy as np
导入数据
pd.read_csv(filename):从CSV文件导入数据 pd.read_table(filename):从限定分隔符的文本文件导入数据 pd.read_excel(filename):从Excel文件导入数据 pd.read_sql(query, connection_object):从SQL表/库导入数据 pd.read_json(json_string):从JSON格式的字符串导入数据 pd.read_html(url):解析URL、字符串或者HTML文件,抽取其中的tables表格 pd.read_clipboard():从你的粘贴板获取内容,并传给read_table() pd.DataFrame(dict):从字典对象导入数据,Key是列名,Value是数据
导出数据
df.to_csv(filename, index=False):导出数据到CSV文件
df.to_excel(filename):导出数据到Excel文件
df.to_sql(table_name, connection_object):导出数据到SQL表
df.to_json(filename):以Json格式导出数据到文本文件
创建测试对象
pd.DataFrame(np.random.rand(20,5)):创建20行5列的随机数组成的DataFrame对象 pd.Series(my_list):从可迭代对象my_list创建一个Series对象 df.index = pd.date_range('1900/1/30', periods=df.shape[0]):增加一个日期索引
查看、检查数据
df.head(n):查看DataFrame对象的前n行 df.tail(n):查看DataFrame对象的最后n行 df.shape():查看行数和列数 http://df.info():查看索引、数据类型和内存信息 df.describe():查看数值型列的汇总统计 s.value_counts(dropna=False):查看Series对象的唯一值和计数 df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数
数据选取
df[col]:根据列名,并以Series的形式返回列 df[[col1, col2]]:以DataFrame形式返回多列 s.iloc[0]:按位置选取数据 s.loc['index_one']:按索引选取数据 df.iloc[0,:]:返回第一行 df.iloc[0,0]:返回第一列的第一个元素
数据清理
df.columns = ['a','b','c']:重命名列名 pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组 pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组 df.dropna():删除所有包含空值的行 df.dropna(axis=1):删除所有包含空值的列 df.dropna(axis=1,thresh=n):删除所有小于n个非空值的行 df.fillna(x):用x替换DataFrame对象中所有的空值 s.astype(float):将Series中的数据类型更改为float类型 s.replace(1,'one'):用‘one’代替所有等于1的值 s.replace([1,3],['one','three']):用'one'代替1,用'three'代替3 df.rename(columns=lambda x: x + 1):批量更改列名 df.rename(columns={'old_name': 'new_ name'}):选择性更改列名 df.set_index('column_one'):更改索引列 df.rename(index=lambda x: x + 1):批量重命名索引
数据处理:Filter、Sort和GroupBy
df[df[col] > 0.5]:选择col列的值大于0.5的行 df.sort_values(col1):按照列col1排序数据,默认升序排列 df.sort_values(col2, ascending=False):按照列col1降序排列数据 df.sort_values([col1,col2], ascending=[True,False]):先按列col1升序排列,后按col2降序排列数据 df.groupby(col):返回一个按列col进行分组的Groupby对象 df.groupby([col1,col2]):返回一个按多列进行分组的Groupby对象 df.groupby(col1)[col2]:返回按列col1进行分组后,列col2的均值 df.pivot_table(index=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表 df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值 data.apply(np.mean):对DataFrame中的每一列应用函数np.mean data.apply(np.max,axis=1):对DataFrame中的每一行应用函数np.max
数据合并
df1.append(df2):将df2中的行添加到df1的尾部 df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部 df1.join(df2,on=col1,how='inner'):对df1的列和df2的列执行SQL形式的join
数据统计
df.describe():查看数据值列的汇总统计
df.mean():返回所有列的均值
df.corr():返回列与列之间的相关系数
df.count():返回每一列中的非空值的个数
df.max():返回每一列的最大值
df.min():返回每一列的最小值
df.median():返回每一列的中位数
df.std():返回每一列的标准差
dataframe数据关联的处理方式与对比
https://www.jianshu.com/p/8344df71b2b3
pandas中关于DataFrame去掉重复行和NaN行
使用pandas自带的drop_duplicates方法:
norepeat_df = df.drop_duplicates(subset=['A_ID', 'B_ID'], keep='first') #去掉A_ID和B_ID列中重复的行,并保留重复出现的行中第一次出现的行 ps: 当keep=False时,就是去掉所有的重复行 当keep=‘first’时,就是保留第一次出现的重复行 当keep='last’时就是保留最后一次出现的重复行。 (注意,这里的参数是字符串,要加引号!!!)
使用pandas自带的dropna()方法:
#删除表中某行全部为NaN的行 nonan_df = df.dropna(axis=0, how='all') #删除表中某行含有任何NaN的行 nonan_df = df.dropna(axis=0, how='any') ps: 删除行的参数axis = 0 删除列的参数axis = 1
找到的非常全面的python资料网: