类的加载过程
在今天的学习中,看到了书上的一道题,从而引发了一些想法。
题目是这样的:创建两个带有默认构造器(空参列表)的类A和类B。从A中继承产生一个名为C的新类,并在C内创建一个B类的成员。不要给C编写构造器。创建一个C雷的对象并观察其结果。
我是这样做的(我在此题的基础上加了一点点东西做实验)
package T007;
public class A {
public A() {
System.out.println("A constructor");
}
}
package T007;
public class B {
public B() {
System.out.println("B constructor");
}
}
package T007;
public class C extends A {
B b = new B();
public C() {
System.out.println(b);
}
}
package T007;
public class Tset {
public static void main(String[] args) {
C c = new C();
}
}
这是我写的四个类,他们在同一个包下,运行的结果是这样:
A constructor
B constructor
T007.B@4e25154f
由此引发了我对类初始化的疑问,于是看了一下其他人的博客,此博客的地址为http://www.cnblogs.com/javaee6/p/3714716.html?utm_source=tuicool&utm_medium=referral
发现作者是看《深入理解java虚拟机》这本书写下的此博客,这本书在不久的未来,我就会涉及。不废话,直接上原文:
1 开门见山
以前曾经看到过一个java的面试题,当时觉得此题很简单,可是自己把代码运行起来,可是结果并不是自己想象的那样。题目如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
class SingleTon { private static SingleTon singleTon = new SingleTon(); public static int count1; public static int count2 = 0 ; private SingleTon() { count1++; count2++; } public static SingleTon getInstance() { return singleTon; } } public class Test { public static void main(String[] args) { SingleTon singleTon = SingleTon.getInstance(); System.out.println( "count1=" + singleTon.count1); System.out.println( "count2=" + singleTon.count2); } } |
错误答案
count1=1
count2=1
正确答案
count1=1
count2=0
为神马?为神马?这要从java的类加载时机说起。
2 类的加载时机
如图:
1.加载
我们编写一个java的源文件,经过编译后生成一个后缀名为.class的文件,这结合四字节码文件,
java虚拟机就识别这种文件,java的生命周期就是class文件从加载到消亡的过程。
关于加载,其实,就是将源文件的class文件找到类的信息将其加载到方法区中,
然后在堆区中实例化一个java.lang.Class对象,作为方法区中这个类的信息的入口。
但是这一功能是在JVM之外实现的,主要的原因是方便让应用程序自己决定如何获取这个类,
在不同的虚拟机实现的方式不一定相同,hotspot虚拟机是采用需要时在加载的方式,
也有其他是先预先加载的。
2.连接
一般会跟加载阶段和初始化阶段交叉进行,过程由三部分组成:验证、准备和解析三步
(1)验证:确定该类是否符合java语言的规范,有没有属性和行为的重复,继承是否合理,总之,就是保证jvm能够执行
(2)准备:主要做的就是为由static修饰的成员变量分配内存,并设置默认的初始值
默认初始值如下:
1.八种基本数据类型默认的初始值是0
2.引用类型默认的初始值是null
3.有static final修饰的会直接赋值,例如:static final int x=10;则默认就是10.
(3)解析:这一阶段的任务就是把常量池中的符号引用转换为直接引用,说白了就是jvm会将所有的类或接口名、字段名、方法名转换为具体的内存地址。
3.初始化
这个阶段就是将静态变量(类变量)赋值的过程,即只有static修饰的才能被初始化,执行的顺序就是:
父类静态域或着静态代码块,然后是子类静态域或者子类静态代码块
4.使用
在类的使用过程中依然存在三步:对象实例化、垃圾收集、对象终结
(1)对象实例化:就是执行类中构造函数的内容,如果该类存在父类JVM会通过显示或者隐示的方式先执行父类的构造函数,在堆内存中为父类的实例变量开辟空间,并赋予默认的初始值,然后在根据构造函数的代码内容将真正的值赋予实例变量本身,然后,引用变量获取对象的首地址,通过操作对象来调用实例变量和方法
(2)垃圾收集:当对象不再被引用的时候,就会被虚拟机标上特别的垃圾记号,在堆中等待GC回收
(3)对象的终结:对象被GC回收后,对象就不再存在,对象的生命也就走到了尽头
5.类卸载
即类的生命周期走到了最后一步,程序中不再有该类的引用,该类也就会被JVM执行垃圾回收,从此生命结束…
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
package com.etc.test; class A{ static int a; //类变量 String name; int id; //静态代码块 static { a=10; System. out .println( "这是父类的静态代码块" +a); } //构造代码块 { id=11; System. out .println( "这是父类的构造代码块id:" +id); } A(){ System. out .println( "这是父类的无参构造函数" ); } A(String name){ System. out .println( "这是父类的name" +name); } } class B extends A{ String name; static int b; static { b=12; System. out .println( "这是子类的静态代码块" +b); } B(String name) { super(); this .name = name; System. out .println( "这是子类的name:" +name); } } public class Test666 { public static void main(String[] args) { B bb= new B( "GG" ); } } |
输出的结果如下:
这是父类的静态代码块10
这是子类的静态代码块12
这是父类的构造代码块id:11
这是父类的无参构造函数
这是子类的name:GG
构造块:直接在类中定义且没有加static关键字的代码块称为{}构造代码块。构造代码块在创建对象时被调用,每次创建对象都会被调用,并且构造代码块的执行次序优先于类构造函数
在插入到每个构造函数中的时候,有个例外,就是如果遇到this关键字(也就是构造函数调用自身其他的构造函数时)不插入构造代码块.
在构造代码块的处理上,super方法没有任何特殊的地方.编译器只是把构造代码块插入到super方法之后执行而已.
3 何时开始类的初始化
- 创建类的实例
- 访问类的静态变量(除常量【被final修辞的静态变量】原因:常量一种特殊的变量,因为编译器把他们当作值(value)而不是域(field)来对待。如果你的代码中用到了常变量(constant variable),编译器并不会生成字节码来从对象中载入域的值,而是直接把这个值插入到字节码中。这是一种很有用的优化,但是如果你需要改变final域的值那么每一块用到那个域的代码都需要重新编译。
- 访问类的静态方法
- 反射如(Class.forName("my.xyz.Test"))
- 当初始化一个类时,发现其父类还未初始化,则先出发父类的初始化
- 虚拟机启动时,定义了main()方法的那个类先初始化
4 被动引用例子
- 子类调用父类的静态变量,子类不会被初始化。只有父类被初始化。。对于静态字段,只有直接定义这个字段的类才会被初始化.
- 通过数组定义来引用类,不会触发类的初始化
- 访问类的常量,不会初始化类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
class SuperClass { static { System.out.println( "superclass init" ); } public static int value = 123 ; } class SubClass extends SuperClass { static { System.out.println( "subclass init" ); } } public class Test { public static void main(String[] args) { System.out.println(SubClass.value); // 被动应用1 SubClass[] sca = new SubClass[ 10 ]; // 被动引用2 } } |
1
2
3
4
5
6
7
8
9
10
11
12
|
class ConstClass { static { System.out.println( "ConstClass init" ); } public static final String HELLOWORLD = "hello world" ; } public class Test { public static void main(String[] args) { System.out.println(ConstClass.HELLOWORLD); // 调用类常量 } } |
5 类的加载过程
5.1 加载
“加载”(Loading)阶段是“类加载”(Class Loading)过程的第一个阶段,在此阶段,虚拟机需要完成以下三件事情:
1、 通过一个类的全限定名来获取定义此类的二进制字节流。
2、 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
3、 在Java堆中生成一个代表这个类的java.lang.Class对象,作为方法区这些数据的访问入口。
加载阶段即可以使用系统提供的类加载器在完成,也可以由用户自定义的类加载器来完成。加载阶段与连接阶段的部分内容(如一部分字节码文件格式验证动作)是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始。
5.2 验证
验证是连接阶段的第一步,这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。
Java语言本身是相对安全的语言,使用Java编码是无法做到如访问数组边界以外的数据、将一个对象转型为它并未实现的类型等,如果这样做了,编译器将拒绝编译。但是,Class文件并不一定是由Java源码编译而来,可以使用任何途径,包括用十六进制编辑器(如UltraEdit)直接编写。如果直接编写了有害的“代码”(字节流),而虚拟机在加载该Class时不进行检查的话,就有可能危害到虚拟机或程序的安全。
不同的虚拟机,对类验证的实现可能有所不同,但大致都会完成下面四个阶段的验证:文件格式验证、元数据验证、字节码验证和符号引用验证。
1、文件格式验证,是要验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理。如验证魔数是否0xCAFEBABE;主、次版本号是否正在当前虚拟机处理范围之内;常量池的常量中是否有不被支持的常量类型……该验证阶段的主要目的是保证输入的字节流能正确地解析并存储于方法区中,经过这个阶段的验证后,字节流才会进入内存的方法区中存储,所以后面的三个验证阶段都是基于方法区的存储结构进行的。
2、元数据验证,是对字节码描述的信息进行语义分析,以保证其描述的信息符合Java语言规范的要求。可能包括的验证如:这个类是否有父类;这个类的父类是否继承了不允许被继承的类;如果这个类不是抽象类,是否实现了其父类或接口中要求实现的所有方法……
3、字节码验证,主要工作是进行数据流和控制流分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的行为。如果一个类方法体的字节码没有通过字节码验证,那肯定是有问题的;但如果一个方法体通过了字节码验证,也不能说明其一定就是安全的。
4、符号引用验证,发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在“解析阶段”中发生。验证符号引用中通过字符串描述的权限定名是否能找到对应的类;在指定类中是否存在符合方法字段的描述符及简单名称所描述的方法和字段;符号引用中的类、字段和方法的访问性(private、protected、public、default)是否可被当前类访问
验证阶段对于虚拟机的类加载机制来说,不一定是必要的阶段。如果所运行的全部代码确认是安全的,可以使用-Xverify:none参数来关闭大部分的类验证措施,以缩短虚拟机类加载时间。
5.3 准备
准备阶段是为类的静态变量分配内存并将其初始化为默认值,这些内存都将在方法区中进行分配。准备阶段不分配类中的实例变量的内存,实例变量将会在对象实例化时随着对象一起分配在Java堆中。
public static int value=123;//在准备阶段value初始值为0 。在初始化阶段才会变为123 。
5.4 解析
解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。
符号引用(Symbolic Reference):符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可。符号引用与虚拟机实现的内存布局无关,引用的目标并不一定已经加载到内存中。
直接引用(Direct Reference):直接引用可以是直接指向目标的指针、相对偏移量或是一个能间接定位到目标的句柄。直接引用是与虚拟机实现的内存布局相关的,如果有了直接引用,那么引用的目标必定已经在内存中存在。
5.5 初始化
类初始化是类加载过程的最后一步,前面的类加载过程,除了在加载阶段用户应用程序可以通过自定义类加载器参与之外,其余动作完全由虚拟机主导和控制。到了初始化阶段,才真正开始执行类中定义的Java程序代码。
初始化阶段是执行类构造器<clinit>()方法的过程。<clinit>()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{}块)中的语句合并产生的。
6 题目分析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
class SingleTon { private static SingleTon singleTon = new SingleTon(); public static int count1; public static int count2 = 0 ; private SingleTon() { count1++; count2++; } public static SingleTon getInstance() { return singleTon; } } public class Test { public static void main(String[] args) { SingleTon singleTon = SingleTon.getInstance(); System.out.println( "count1=" + singleTon.count1); System.out.println( "count2=" + singleTon.count2); } } |
分析:
2:类加载的时候在准备过程中为类的静态变量分配内存并初始化默认值 singleton=null count1=0,count2=0
3:类初始化化,为类的静态变量赋值和执行静态代码快。singleton赋值为new SingleTon()调用类的构造方法
4:调用类的构造方法后count=1;count2=1
5:继续为count1与count2赋值,此时count1没有赋值操作,所有count1为1,但是count2执行赋值操作就变为0