Luogu P4246 [SHOI2008]堵塞的交通(线段树+模拟)

P4246 [SHOI2008]堵塞的交通

题意

题目描述

有一天,由于某种穿越现象作用,你来到了传说中的小人国。小人国的布局非常奇特,整个国家的交通系统可以被看成是一个\(2\)\(C\)列的矩形网格,网格上的每个点代表一个城市,相邻的城市之间有一条道路,所以总共有\(2C\)个城市和\(3C-2\)条道路。

小人国的交通状况非常槽糕。有的时候由于交通堵塞,两座城市之间的道路会变得不连通,直到拥堵解决,道路才会恢复畅通。初来咋到的你决心毛遂自荐到交通部某份差事,部长听说你来自一个科技高度发达的世界,喜出望外地要求你编写一个查询应答系统,以挽救已经病入膏肓的小人国交通系统。 小人国的交通部将提供一些交通信息给你,你的任务是根据当前的交通情况回答查询的问题。交通信息可以分为以下几种格式:

  • Close r1 c1 r2 c2:相邻的两座城市\((r_1, c_1)\)\((r_2, c_2)\)之间的道路被堵塞了;
  • Open r1 c1 r2 c2:相邻的两座城市\((r_1, c_1)\)\((r_2, c_2)\)之间的道路被疏通了;
  • Ask r1 c1 r2 c2:询问城市\((r_1, c_1)\)\((r_2, c_2)\)是否连通。如果存在一条路径使得这两条城市连通,则返回Y,否则返回N

注:\(r_i\)表示行数,\(c_i\)表示列数, \(1\leq r_i\leq 2,1\leq c_i\leq C\)

输入输出格式

输入格式:

第一行只有一个整数\(C\),表示网格的列数。接下来若干行,每行为一条交通信息,以单独的一行Exit作为结束。我们假设在一开始所有的道路都是堵塞的。我们保证\(C\)小于等于\(100000\),信息条数小于等于\(100000\)

输出格式:

对于每个查询,输出一个YN

输入输出样例

输入样例#1:

2
Open 1 1 1 2
Open 1 2 2 2
Ask 1 1 2 2
Ask 2 1 2 2
Exit

输出样例#1:

Y
N

说明

数据范围:

对于\(100\%\)的数据,\(1\leq C\leq 100000,1\leq \text{信息条数}\leq 100000\)

思路

什么**线段树。 --Mercury

用线段树来写,每个结点维护区间\([l,r]\)的连通性。维护时记录六个值:

  1. \(ldrd(left-down\ to\ right-down)\)
  2. \(luru(left-up\ to\ right-up)\)
  3. \(luld(left-up\ to\ left-down)\)
  4. \(rurd(right-up\ to\ right-down)\)
  5. \(lurd(left-up\ to\ right-down)\)
  6. \(ldru(left-down\ to\ right-up)\)

合并过程其实就是大力模拟的过程,考虑所有的路的经过情况。详见代码的两个update函数。

修改的时候要分类讨论,横线的变化与竖线的变化是不同的情况。

查询的时候要注意,两点可能绕外面的路互相到达,所以还是要大力模拟,考虑绕路和不绕路的情况。

代码的变量名还是比较清楚的,所以就详见代码吧 (才不是我懒得写)

AC代码

#include<bits/stdc++.h>
using namespace std;
const int MAXN=1e5+5;
int n;
int ru[MAXN],rd[MAXN];
struct SegmentTree
{
    int l,r;
    bool ldrd,luru,luld,rurd,lurd,ldru;
    #define l(x) tree[x].l
    #define r(x) tree[x].r
    #define ldrd(x) tree[x].ldrd
    #define luru(x) tree[x].luru
    #define luld(x) tree[x].luld
    #define rurd(x) tree[x].rurd
    #define lurd(x) tree[x].lurd
    #define ldru(x) tree[x].ldru
}tree[MAXN<<2];
int read()
{
    int re=0;char ch=getchar();
    while(!isdigit(ch)) ch=getchar();
    while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
    return re;
}
char readc()
{
    char ch=getchar();
    while(!isalpha(ch)) ch=getchar();
    return ch;
}
void update(int p)
{
    l(p)=l(p<<1),r(p)=r(p<<1|1);
    ldrd(p)=(ldrd(p<<1)&&rd[r(p<<1)]&&ldrd(p<<1|1))||(ldru(p<<1)&&ru[r(p<<1)]&&lurd(p<<1|1));
    luru(p)=(luru(p<<1)&&ru[r(p<<1)]&&luru(p<<1|1))||(lurd(p<<1)&&rd[r(p<<1)]&&ldru(p<<1|1));
    luld(p)=luld(p<<1)||(luru(p<<1)&&ru[r(p<<1)]&&luld(p<<1|1)&&rd[r(p<<1)]&&ldrd(p<<1));
    rurd(p)=rurd(p<<1|1)||(luru(p<<1|1)&&ru[r(p<<1)]&&rurd(p<<1)&&rd[r(p<<1)]&&ldrd(p<<1|1));
    lurd(p)=(luru(p<<1)&&ru[r(p<<1)]&&lurd(p<<1|1))||(lurd(p<<1)&&rd[r(p<<1)]&&ldrd(p<<1|1));
    ldru(p)=(ldrd(p<<1)&&rd[r(p<<1)]&&ldru(p<<1|1))||(ldru(p<<1)&&ru[r(p<<1)]&&luru(p<<1|1));
}
void update(SegmentTree &re,SegmentTree x,SegmentTree y)
{
    re.l=x.l,re.r=y.r;
    re.ldrd=(x.ldrd&&rd[x.r]&&y.ldrd)||(x.ldru&&ru[x.r]&&y.lurd);
    re.luru=(x.luru&&ru[x.r]&&y.luru)||(x.lurd&&rd[x.r]&&y.ldru);
    re.luld=x.luld||(x.luru&&ru[x.r]&&y.luld&&rd[x.r]&&x.ldrd);
    re.rurd=y.rurd||(y.luru&&ru[x.r]&&x.rurd&&rd[x.r]&&y.ldrd);
    re.lurd=(x.luru&&ru[x.r]&&y.lurd)||(x.lurd&&rd[x.r]&&y.ldrd);
    re.ldru=(x.ldrd&&rd[x.r]&&y.ldru)||(x.ldru&&ru[x.r]&&y.luru);
}
void build(int p,int ll,int rr)
{
    if(ll==rr)
    {
        l(p)=ll,r(p)=rr;
        luru(p)=ldrd(p)=true;
        return ;
    }
    int mid=(ll+rr)>>1;
    build(p<<1,ll,mid);
    build(p<<1|1,mid+1,rr);
    update(p);
}
void change1(int p,int des,bool up,bool val)
{
    int mid=(l(p)+r(p))>>1;
    if(mid==des)
    {
        if(up) ru[des]=val;
        else rd[des]=val;
        update(p);
        return ;
    }
    if(des<=mid) change1(p<<1,des,up,val);
    else change1(p<<1|1,des,up,val);
    update(p);
}
void change2(int p,int des,bool val)
{
    if(l(p)==r(p))
    {
        luld(p)=rurd(p)=lurd(p)=ldru(p)=val;
        return ;
    }
    int mid=(l(p)+r(p))>>1;
    if(des<=mid) change2(p<<1,des,val);
    else change2(p<<1|1,des,val);
    update(p);
}
SegmentTree ask(int p,int ll,int rr)
{
    if(ll<=l(p)&&r(p)<=rr) return tree[p];
    int mid=(l(p)+r(p))>>1;
    if(rr<=mid) return ask(p<<1,ll,rr);
    else if(ll>mid) return ask(p<<1|1,ll,rr);
    else
    {
        SegmentTree re;
        update(re,ask(p<<1,ll,rr),ask(p<<1|1,ll,rr));
        return re;
    }
}
int main()
{
    n=read();
    build(1,1,n);
    while(true)
    {
        char opt=readc();
        if(opt=='E') break;
        int x=read(),y=read(),xx=read(),yy=read();
        if(y>yy) swap(x,xx),swap(y,yy);
        if(opt=='C')
        {
            if(y==yy) change2(1,y,false);
            else change1(1,y,x==1,false);
        }
        else if(opt=='O')
        {
            if(y==yy) change2(1,y,true);
            else change1(1,y,x==1,true);
        }
        else if(opt=='A')
        {
            SegmentTree ll=ask(1,1,y),mid=ask(1,y,yy),rr=ask(1,yy,n);
            if(x==1&&xx==1)
            {
                if(mid.luru||(ll.rurd&&mid.ldru)||(mid.lurd&&rr.luld)||(ll.rurd&&mid.ldrd&&rr.luld)) puts("Y");
                else puts("N");
            }
            else if(x==2&&xx==2)
            {
                if(mid.ldrd||(ll.rurd&&mid.lurd)||(mid.ldru&&rr.luld)||(ll.rurd&&mid.luru&&rr.luld)) puts("Y");
                else puts("N");
            }
            else if(x==1&&xx==2)
            {
                if(mid.lurd||(ll.rurd&&mid.ldrd)||(mid.luru&&rr.luld)||(ll.rurd&&mid.ldru&&rr.luld)) puts("Y");
                else puts("N");
            }
            else if(x==2&&xx==1)
            {
                if(mid.ldru||(ll.rurd&&mid.luru)||(mid.ldrd&&rr.luld)||(ll.rurd&&mid.lurd&&rr.luld)) puts("Y");
                else puts("N");
            }
        }
    }
    return 0;
}
posted @ 2018-11-04 15:26  UranusITS  阅读(129)  评论(0编辑  收藏  举报