CodeForces 232C Doe Graphs(分治+搜索)

CF232C Doe Graphs

题意

题意翻译

\(Doe\)以她自己的名字来命名下面的无向图

\(D(0)\)是只有一个编号为\(1\)的结点的图.

\(D(1)\)是只有两个编号分别为\(1\)\(2\)的点与一条连接这两个点的边的图.

\(D(n)\)以如下方法构造

\(D(n-2)\)中所有点的编号加上\(|D(n-1)|\)

在点\(|D(n-1)|\)与点\(|D(n-1)|+1\)之间连边。

在点\(|D(n-1)|+1\)与点1之间连边

现在\(Doe\)已经构造出了\(D(n)(n\leq 100)\),她会多次询问你在这张图中\(a\ b\)两点间的最短路

CF232C

输入输出格式

输入格式:

The first line contains two integers \(t\) and \(n\) ( \(1\leq t\leq 10^{5}; 1\leq n\leq 10^{3}\) ) — the number of queries and the order of the given graph. The \(i\)-th of the next \(t\) lines contains two integers \(a_{i}\) and \(b_{i}\) ( \(1\leq a_{i},b_{i}\leq 10^{16}, a_{i}\neq b_{i}\) ) — numbers of two vertices in the \(i\)-th query. It is guaranteed that \(a_{i},b_{i}\leq |D(n)|\).

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.

输出格式:

For each query print a single integer on a single line — the length of the shortest path between vertices \(a_{i}\) and \(b_{i}\). Print the answers to the queries in the order, in which the queries are given in the input.

输入输出样例

输入样例#1:

10 5
1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5

输出样例#1:

1
1
1
2
1
2
3
1
2
1

思路

首先想到,每张图的点的数量是有规律的:

\[V(D(n))=V(D(n-1))+V(D(n-2)) \]

这不就是斐波那契数列吗?我们不妨直接记\(F(n)\)\(D(n)\)的顶点数。

然后考虑查询两点\(a\ b\)\(D(n)\)中的最短路,一开始我的想法是这样的:如果有\(1\leq a,b\leq F(n-1)\),那么\(a\ b\)\(D(n)\)中的最短路也就是在\(D(n-1)\)中的最短路;如果有\(F(n-1)< a,b\leq F(n)\),那么\(a\ b\)\(D(n)\)中的最短路也就是在\(D(n-2)\)中的最短路。其余的情况再分治下去。但是这是有问题的,因为有的时候两点可以绕到下一张图上去,然后再绕回一张图中,这样的距离可能会更短。

具体来说,一共有这几种情况:

  • \(a\ b\)都在\(D(n-1)\)的范围内:
    • \(a\)直接走图\(D(n-1)\)到达\(b\)
    • \(a\)通过点\(1\)走到图\(D(n-2)\),再绕回到图\(D(n-1)\),到达\(b\)
    • \(a\)通过点\(F(n-1)\)走到图\(D(n-2)\),再绕回到图\(D(n-1)\),到达\(b\)
  • \(a\ b\)都在\(D(n-2)\)的范围内:
    • \(a\)直接走图\(D(n-2)\)到达\(b\)
  • \(a\)\(D(n-1)\)范围内,而\(b\)\(D(n-2)\)范围内:
    • \(a\)通过点\(1\)走到图\(D(n-2)\),再走到\(b\)
    • \(a\)通过点\(F(n-1)\)走到图\(D(n-2)\),再走到\(b\)

那么我们就可以在搜索的过程中分类讨论来优化了。

但是这样还是会\(TLE\)。接下来,我们发现有多次重复询问是关于\(a\)点如何最快到达\(1\)点或者\(F(n-1)\)点,我们就可以先把它预处理出来,再搜索。具体实现见代码。

AC代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
LL n,m,f[1005],d[1005],d1[1005],d2[1005],d3[1005],d4[1005];
LL read()
{
    LL re=0;char ch=getchar();
    while(!isdigit(ch)) ch=getchar();
    while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
    return re;
}
void prework(LL x,LL g,LL *a1,LL *a2)
{
    if(!g){a1[g]=a2[g]=0;return ;}
    if(g==1){a1[g]=(x==2),a2[g]=(x==1);return ;}
    if(x<=f[g-1])
    {
        prework(x,g-1,a1,a2);
        a1[g]=min(a1[g-1],a2[g-1]+2);
        a2[g]=min(a1[g-1],a2[g-1])+1+d[g-2];
    }
    else
    {
        prework(x-f[g-1],g-2,a1,a2);
        a1[g]=a1[g-2]+1;
        a2[g]=a2[g-2];
    }
}
LL ask(LL g,LL x,LL y)
{
    if(g<=1) return x!=y;
    if(x<=f[g-1]&&y<=f[g-1]) return min(ask(g-1,x,y),min(d1[g-1]+d4[g-1],d2[g-1]+d3[g-1])+2);
    if(x<=f[g-1]&&y>f[g-1]) return min(d1[g-1],d2[g-1])+1+d3[g-2];
    else return ask(g-2,x-f[g-1],y-f[g-1]);
}
int main()
{
    f[0]=1,f[1]=2,d[0]=0,d[1]=1;
    for(LL i=2;i<80;i++) f[i]=f[i-1]+f[i-2],d[i]=d[i-2]+1;
    m=read(),n=min(read(),LL(80));
    while(m--)
    {
        LL x=read(),y=read();if(x>y) swap(x,y);
        prework(x,n,d1,d2);prework(y,n,d3,d4);
        printf("%lld\n",ask(n,x,y));
    }
    return 0;
}
posted @ 2018-11-01 13:51  UranusITS  阅读(135)  评论(0编辑  收藏  举报