yolov3计算mAP

搜了半天,都是要下载voc_eval.py文件,但该文件只能在python2下运行。以下是python3版本的:

# coding:utf-8
import xml.etree.ElementTree as ET
import os
#import cPickle
import _pickle as cPickle
import numpy as np
 
def parse_rec(filename):
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(filename)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        obj_struct['pose'] = obj.find('pose').text
        obj_struct['truncated'] = int(obj.find('truncated').text)
        obj_struct['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)
 
    return objects
 
def voc_ap(rec, prec, use_07_metric=False):
    """ ap = voc_ap(rec, prec, [use_07_metric])
    Compute VOC AP given precision and recall.
    If use_07_metric is true, uses the
    VOC 07 11 point method (default:False).
    """
    if use_07_metric:
        # 11 point metric
        ap = 0.
        for t in np.arange(0., 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(prec[rec >= t])
            ap = ap + p / 11.
    else:
        # correct AP calculation
        # first append sentinel values at the end
        mrec = np.concatenate(([0.], rec, [1.]))
        mpre = np.concatenate(([0.], prec, [0.]))
 
        # compute the precision envelope
        for i in range(mpre.size - 1, 0, -1):
            mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
 
        # to calculate area under PR curve, look for points
        # where X axis (recall) changes value
        i = np.where(mrec[1:] != mrec[:-1])[0]
 
        # and sum (\Delta recall) * prec
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap
 
def voc_eval(detpath,
             annopath,
             imagesetfile,
             classname,
             cachedir,
             ovthresh=0.5,
             use_07_metric=False):
    """rec, prec, ap = voc_eval(detpath,
                                annopath,
                                imagesetfile,
                                classname,
                                [ovthresh],
                                [use_07_metric])
    Top level function that does the PASCAL VOC evaluation.
    detpath: Path to detections
        detpath.format(classname) should produce the detection results file.
    annopath: Path to annotations
        annopath.format(imagename) should be the xml annotations file.
    imagesetfile: Text file containing the list of images, one image per line.
    classname: Category name (duh)
    cachedir: Directory for caching the annotations
    [ovthresh]: Overlap threshold (default = 0.5)
    [use_07_metric]: Whether to use VOC07's 11 point AP computation
        (default False)
    """
    # assumes detections are in detpath.format(classname)
    # assumes annotations are in annopath.format(imagename)
    # assumes imagesetfile is a text file with each line an image name
    # cachedir caches the annotations in a pickle file
 
    # first load gt
    if not os.path.isdir(cachedir):
        os.mkdir(cachedir)
    cachefile = os.path.join(cachedir, 'annots.pkl')
    
    # read list of images
    with open(imagesetfile, 'r') as f:
        lines = f.readlines()
    imagenames = [x.strip() for x in lines] #文件名
    
    if not os.path.isfile(cachefile):
        #print("zaybnzazazazazazazaza")
        # load annots
        recs = {}
        for i, imagename in enumerate(imagenames):
            recs[imagename] = parse_rec(annopath.format(imagename))
            if i % 100 == 0:
                print('Reading annotation for {:d}/{:d}'.format(
                    i + 1, len(imagenames)))
        # save
        print('Saving cached annotations to {:s}'.format(cachefile))
        with open(cachefile, 'wb') as f:
            cPickle.dump(recs, f)
    else:
        # load
        with open(cachefile, 'rb') as f:
            try:
                recs = cPickle.load(f)
            except EOFError:
                return 
            #recs = cPickle.load(f)
    # extract gt objects for this class
    class_recs = {}
    npos = 1
    for imagename in imagenames:
        R = [obj for obj in recs[imagename] if obj['name'] == classname]
        bbox = np.array([x['bbox'] for x in R])
        difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
        det = [False] * len(R)
        npos = npos + sum(~difficult)
        class_recs[imagename] = {'bbox': bbox,
                                 'difficult': difficult,
                                 'det': det}
    # read dets
    detfile = detpath.format(classname)
    with open(detfile, 'rb+') as f:
        lines = f.readlines()
    #print("type(lines[0]):",type(lines[0]))
    #print("type(x):",type(str(lines[0]).strip().split(" ")))
    splitlines = [str(x).strip().split(' ') for x in lines]
    
    #splitlines = splitlines.encode()
    #print(type(splitlines))
    image_ids = [x[0] for x in splitlines]
    confidence = np.array([float(x[1]) for x in splitlines])
    a = "\\n'"
#     for x in splitlines:
#         for z in x[2:]:
#             if a in z:
#                 print(z[:len(z)-3])
#             else:
#                 print(z)
            
            
    #remove \n
    BB = np.array([[float(z) if a not in z else float(z[:len(z)-3]) for z in x[2:]] for x in splitlines])
    #print(BB)
 
    # sort by confidence
    sorted_ind = np.argsort(-confidence)
    sorted_scores = np.sort(-confidence)
    BB = BB[sorted_ind, :]
    image_ids = [image_ids[x] for x in sorted_ind]
 
    # go down dets and mark TPs and FPs
    nd = len(image_ids)
    tp = np.zeros(nd)
    fp = np.zeros(nd)
    for d in range(nd):
        #print(image_ids[d][2:])
        #print(class_recs)
        R = class_recs[image_ids[d][2:]]
        bb = BB[d, :].astype(float)
        ovmax = -np.inf
        BBGT = R['bbox'].astype(float)
 
        if BBGT.size > 0:
            # compute overlaps
            # intersection
            ixmin = np.maximum(BBGT[:, 0], bb[0])
            iymin = np.maximum(BBGT[:, 1], bb[1])
            ixmax = np.minimum(BBGT[:, 2], bb[2])
            iymax = np.minimum(BBGT[:, 3], bb[3])
            iw = np.maximum(ixmax - ixmin + 1., 0.)
            ih = np.maximum(iymax - iymin + 1., 0.)
            inters = iw * ih
 
            # union
            uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
                   (BBGT[:, 2] - BBGT[:, 0] + 1.) *
                   (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
 
            overlaps = inters / uni
            ovmax = np.max(overlaps)
            jmax = np.argmax(overlaps)
 
        if ovmax > ovthresh:
            if not R['difficult'][jmax]:
                if not R['det'][jmax]:
                    tp[d] = 1.
                    R['det'][jmax] = 1
                else:
                    fp[d] = 1.
            fp[d] = 1.
 
    # compute precision recall
    fp = np.cumsum(fp)
    tp = np.cumsum(tp)
    rec = tp / float(npos)
    # avoid divide by zero in case the first detection matches a difficult
    # ground truth
    prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
    ap = voc_ap(rec, prec, use_07_metric)
 
    return rec, prec, ap

文件放在yolov3根目录下,然后编写计算文件,computer_single_all_map.py

from voc_eval import voc_eval

import os

current_path = os.getcwd()
results_path = current_path+"/results"
sub_files = os.listdir(results_path)

mAP = []
for i in range(len(sub_files)):
    class_name = sub_files[i].split(".txt")[0]
    rec, prec, ap = voc_eval('./results/{}.txt', './xml/{}.xml', './data/pig_val_map.txt', class_name, '.')
    print("{} :\t {} ".format(class_name, ap))
    mAP.append(ap)

mAP = tuple(mAP)

print("***************************")
print("mAP :\t {}".format( float( sum(mAP)/len(mAP)) )) 

需要改3个位置:

./results/{}.txt改为存放验证文件的路径,如图;

./xml/{}.xml改为存放数据集xml文件的路径,如图;

./data/pig_val_map.txt改为验证文件的路径(该文件只填写数据集文件的名称,不要加路径和后缀),如图;

生成验证文件
./darknet detector valid ./cfg/pig.data ./cfg/yolov3-pig.cfg backup/yolov3-pig_last.weights -out "" -gpu 0 -thresh .5

会在result目录下生成各分类的验证文件,我只有一个分类:pig,所以生成了pig.txt。

计算mAP
rm -f annots.pkl
python computer_Single_ALL_mAP.py.py
每次重新计算,都要删掉annots.pkl文件。

参考:YOLOv3 训练自己的数据附优化与问题总结 (mamicode.com)

[yolov3]./darknet detector valid “eval: Using default ‘voc‘ 4 段错误“_yuchen的博客-CSDN博客

YOLOv3 mAP计算教程_阿木寺的博客-CSDN博客_yolov3计算map

YOLO V3计算mAP (voc_eval.py)适用于python3_菜鸟的进阶之路1D的博客-CSDN博客

posted @ 2021-12-30 14:19  盛世芳华  阅读(520)  评论(0编辑  收藏  举报