基于Spark的网站日志分析
本文只展示核心代码,完整代码见文末链接。
Web Log Analysis
- 提取需要的log信息,包括time, traffic, ip, web address
- 进一步解析第一步获得的log信息,如把ip转换为对应的省份,从网址中提取出访问内容和内容ID,最后将信息转换为parquet格式。
(1)按日期和内容(video)的ID进行分组,并根据访问次数进行倒序排序。
(2)按日期,内容(video)的ID和省份进行分组,并根据访问次数排名取前3。
最后将(1)和(2)数据写入MySQL。
注意:(1)写入数据库时分partition写入,而非逐条写入。
(2)先filter出公用的df并进行cache
(3)下面代码应该能进一步优化,例如将videoAccessTopNStat的try/catch中生成partition list和StatDAO.inserDayVideoAccessTopN(list)中生成batch应该可以合并,避免两次遍历。
设计和编写思路:
1.设计输入参数args(如inputPath和outputPath)
2.设计转换的工具类,包括StructType(需要提取什么信息,分别是什么格式),parseLog(split并提取各index的信息,用try/catch包裹,设置默认输出)。其中对时间的提取可另外定义一个工具类,包括inputFormat,outputFormat,getTime和parse。而对地域的提取,可另外定义一个IpUtils,引入开源代码ipdatabase。这些工具类写完后都要在自身main方法中测试。最后生成DF。
3.filter出commonDF。
4.实现特定的数据统计
5.输出数据,如果写入MySQL,就另外创建一个StatDAO类,包括获取链接,分批写入数据和release链接。
//Step One:
/**
* 将原始日志数据进行解析,返回信息包括visit time, url, traffic, ip
* @param .log, example: 183.162.52.7 - - [10/Nov/2016:00:01:02 +0800]
* "POST /api3/getadv HTTP/1.1" ...
* @return partitioned files, example: 1970-01-01 08:00:00\t-
* \t813\t183.162.52.7
*/
if (args.length != 2) {
println("Usage: logCleanYarn <inputPath> <outputPath>")
System.exit(1)
}
val Array(inputPath, outputPath) = args
val spark = SparkSession.builder().getOrCreate()
val access = spark.sparkContext.textFile(inputPath)
//access.take(10).foreach(println)
val splited = access.map(line => {
val splits = line.split(" ")
val ip = splits(0)
val time = splits(3) + " " + splits(4)
val url = splits(11).replaceAll("\"", "") //remove quotation mark
val traffic = splits(9)
// (ip, DataUtils.parse(time), url, traffic)
DataUtils.parse(time) + "\t" + url + "\t" + traffic + "\t" + ip
})
splited.saveAsTextFile(outputPath)
spark.stop()
/**
* 用于解析日志时间
*/
object DataUtils {
//input_format: [10/Nov/2016:00:01:02 +0800]
val YYYYMMDDHHMM_TIME_FORMAT = FastDateFormat.getInstance("dd/MMM/yyyy:HH:mm:SS Z", Locale.ENGLISH)
//output_format: yyyy-MM-dd HH:mm:ss
val TARGET_FORMAT = FastDateFormat.getInstance("yyyy-MM-dd HH:mm:ss")
def getTime(time: String) = {
try {
YYYYMMDDHHMM_TIME_FORMAT.parse(time.substring(time.indexOf("[") + 1, time.lastIndexOf("]"))).getTime
} catch {
case _ => 0l
}
}
/**
* example: [10/Nov/2016:00:01:02 +0800] ==> 2016-11-10 00:01:00
*/
def parse(time: String) = {
TARGET_FORMAT.format(new Date(getTime(time)))
}
// def main(args: Array[String]): Unit = {
// println(parse("[10/Nov/2016:00:01:02 +0800]"))
// }
}
//Step Two:
/**
* 将第一步解析出来的数据转化为DataFrame,并保存为一份parquet文件。
*/
if (args.length != 2) {
println("Usage: logCleanYarn <inputPath> <outputPath>")
System.exit(1)
}
val Array(inputPath, outputPath) = args
val spark = SparkSession.builder().getOrCreate()
val access = spark.sparkContext.textFile(inputPath)
// access.take(10).foreach(println)
val accessDF = spark.createDataFrame(access.map(line => AccessConvertUtil.parseLog(line)), AccessConvertUtil.struct)
// accessDF.printSchema()
// accessDF.show(false)
accessDF.coalesce(1).write.format("parquet").partitionBy("day")
.save(outputPath)
spark.stop()
/**
* 工具类,定义了schema和进一步解析log的方法
*/
object AccessConvertUtil {
val struct = StructType(Seq(
StructField("url", StringType),
StructField("cmsType", StringType),
StructField("cmsId", IntegerType),
StructField("traffic", IntegerType),
StructField("ip", StringType),
StructField("city", StringType),
StructField("time", StringType),
StructField("day", StringType)
))
/**
* 进一步解析log,如转化数据类型,解析网址,ip映射具体省份,最后以Row输出
*/
def parseLog(log: String) = {
try{
val splited = log.split("\t")
val url = splited(1)
val traffic = splited(2).toInt
val ip = splited(3)
// 网址:"http://www.xxx.com/article/101"中article为网页内容,101为article的ID
val domain = "http://www.xxx.com/"
val cms = url.substring(url.indexOf(domain) + domain.length)
val cmsTypeId = cms.split("/")
var cmsType = ""
var cmsId = 0
if (cmsTypeId.length > 1) {
cmsType = cmsTypeId(0)
cmsId = cmsTypeId(1).toInt
}
val city = IpUtils.getCity(ip)
val time = splited(0)
val day = time.substring(0, 10).replaceAll("-", "")
Row(url, cmsType, cmsId, traffic, ip, city, time, day)
} catch {
case _ => {
Row(null, null, null, null, null, null, null, null)
}
}
}
}
/**
* Ip工具类,将IP映射为省份,利用开源代码ipdatabase
* https://github.com/wzhe06/ipdatabase
*/
object IpUtils {
def getCity(ip: String) = {
IpHelper.findRegionByIp(ip)
}
def main(args: Array[String]): Unit = {
println(getCity("58.30.15.255"))
}
}
//Step Three:
/**
* 在第二步的结果数据中,按日期和video的ID进行分组,并根据访问次数进行倒序排序。
* 最后将数据写入MySQL。
*/
if (args.length != 2) {
println("Usage: logCleanYarn <inputPath> <day>")
System.exit(1)
}
val Array(inputPath, day) = args
val spark = SparkSession.builder()
.config("spark.sql.sources.partitionColumnTypeInference.enabled", "false")
.getOrCreate()
val accessDF = spark.read.format("parquet").load(inputPath)
// accessDF.printSchema()
// accessDF.show(false)
//预先筛选和cache后面两个函数要复用的df
import spark.implicits._
val commonDF = accessDF.filter($"day" === day && $"cmsType" === "video")
commonDF.cache()
//删除已有的内容,避免重复
StatDAO.deleteData(day)
//groupBy video
videoAccessTopNStat(spark, commonDF)
//groupBy city
cityAccessTopNStat(spark, commonDF)
commonDF.unpersist(true)
// videoAccessTopDF.show(false)
spark.stop()
/**
* 两个样例类,用于储存不同数据类型,应用于下面两个方法。
*/
case class DayVideoAccessStat(day: String, cmsId: Long, times: Long)
case class DayCityVideoAccessStat(day: String, cmsId: Long, city: String, times: Long, timesRank: Int)
/**
* 按内容ID分组后排序,并把结果写到Mysql
*/
def videoAccessTopNStat(spark: SparkSession, comDF: DataFrame): Unit = {
import spark.implicits._
val videoAccessTopNStat = comDF
.groupBy($"day", $"cmsId")
.agg(count("cmsId").as("times"))
.orderBy(desc("times"))
try {
videoAccessTopNStat.foreachPartition(partitionOfRecords =>{
val list = new ListBuffer[DayVideoAccessStat]
partitionOfRecords.foreach(info => {
val day = info.getAs[String]("day")
val cmsId = info.getAs[Long]("cmsId")
val times = info.getAs[Long]("times")
list.append(DayVideoAccessStat(day, cmsId, times))
})
StatDAO.inserDayVideoAccessTopN(list)
})
} catch {
case e:Exception => e.printStackTrace()
}
}
/**
* 按内容ID和省份分组后排名,并把结果写到Mysql
*/
def cityAccessTopNStat(spark: SparkSession, comDF: DataFrame): Unit = {
import spark.implicits._
val videoAccessTopNStat = comDF
.groupBy($"day", $"city", $"cmsId")
.agg(count("cmsId").as("times"))
val windowSpec = Window.partitionBy($"city").orderBy(desc("times"))
val videoAccessTopNStatDF = videoAccessTopNStat.select(expr("*"), rank().over(windowSpec).as("times_rank"))
.filter($"times_rank" <= 3)
try {
videoAccessTopNStatDF.foreachPartition(partitionOfRecords => {
val list = new ListBuffer[DayCityVideoAccessStat]
partitionOfRecords.foreach(info => {
val day = info.getAs[String]("day")
val cmsId = info.getAs[Long]("cmsId")
val city = info.getAs[String]("city")
val times = info.getAs[Long]("times")
val timesRank = info.getAs[Int]("times_rank")
list.append(DayCityVideoAccessStat(day, cmsId, city, times, timesRank))
})
StatDAO.inserDayCityVideoAccessTopN(list)
})
} catch {
case e: Exception => e.printStackTrace()
}
}
/**
* 分组后排序方法
*/
def videoAccessSortedStat(spark: SparkSession, accessDF: DataFrame) : Unit = {
import spark.implicits._
val sortedStat= accessDF
.filter($"day" === "20170511" && $"cmsType" === "video")
.groupBy($"day", $"cmsId")
.agg(count("cmsId").as("times"))
.orderBy(desc("times"))
// 分块创建存储每条信息的list,并调用函数将数据写到到MySQL
try {
sortedStat.foreachPartition(partitionOfRecords =>{
val list = new ListBuffer[DayVideoAccessStat]
partitionOfRecords.foreach(info => {
val day = info.getAs[String]("day")
val cmsId = info.getAs[Long]("cmsId")
val times = info.getAs[Long]("times")
list.append(DayVideoAccessStat(day, cmsId, times))
})
StatDAO.inserDayVideoAccessSortedStat(list)
})
} catch {
case e:Exception => e.printStackTrace()
}
}
//Step Three:
/**
* 工具类,提供两类方法:
* 1.连接数据库,将数据写入MySQL,并释放连接的方法。
* 2.删除MySQL中已存在的(相同entry的数据)
*/
object StatDAO {
def inserDayVideoAccessTopN(list: ListBuffer[DayVideoAccessStat]): Unit = {
var connection: Connection = null
var pstmt: PreparedStatement = null
try{
connection = MySQLUtils.getConnect()
val sql = "insert into day_video_access_topn_stat(day, cms_id, times) values (?, ?, ?)"
val pstmt = connection.prepareStatement(sql)
connection.setAutoCommit(false)
for (ele <- list) {
pstmt.setString(1, ele.day)
pstmt.setLong(2, ele.cmsId)
pstmt.setLong(3, ele.times)
pstmt.addBatch()
}
pstmt.executeBatch()
connection.commit()
} catch {
case e:Exception => e.printStackTrace()
} finally {
MySQLUtils.release(connection, pstmt)
}
}
def inserDayCityVideoAccessTopN(list: ListBuffer[DayCityVideoAccessStat]): Unit = {
var connection: Connection = null
var pstmt: PreparedStatement = null
try{
connection = MySQLUtils.getConnect()
val sql = "insert into day_video_city_access_topn_stat(day, cms_id, city, times, times_rank) values (?, ?, ?, ?, ?)"
val pstmt = connection.prepareStatement(sql)
connection.setAutoCommit(false)
for (ele <- list) {
pstmt.setString(1, ele.day)
pstmt.setLong(2, ele.cmsId)
pstmt.setString(3, ele.city)
pstmt.setLong(4, ele.times)
pstmt.setInt(5, ele.timesRank)
pstmt.addBatch()
}
pstmt.executeBatch()
connection.commit()
} catch {
case e:Exception => e.printStackTrace()
} finally {
MySQLUtils.release(connection, pstmt)
}
}
def deleteData(day: String): Unit = {
val tables = Array("day_video_access_topn_stat", "day_video_city_access_topn_stat")
var connection: Connection = null
var pstmt: PreparedStatement = null
try {
connection = MySQLUtils.getConnect()
for (table <- tables) {
val sql = s"delete from $table where day = ?"
val pstmt = connection.prepareStatement(sql)
pstmt.setString(1, day)
pstmt.executeUpdate()
}
} catch {
case e: Exception => e.printStackTrace()
} finally {
MySQLUtils.release(connection, pstmt)
}
}
}
/**
* 工具类,包含连接数据库和释放连接的方法。
*/
object MySQLUtils {
def getConnect() = {
DriverManager.getConnection("jdbc:mysql://localhost:3306/log_project","root", "password")
}
def release(connection: Connection, pstmt: PreparedStatement): Unit ={
try{
if (pstmt != null) {
pstmt.close()
}
} catch {
case e: Exception => e.printStackTrace()
} finally {
if (connection != null) {
connection.close()
}
}
}
def main(args: Array[String]): Unit = {
println(getConnect())
}
}
参考:
大数据 Spark SQL慕课网日志分析
GitHub源码