基于Spark的GBDT + LR模型实现
基于Spark的GBDT + LR模型实现
测试数据来源http://archive.ics.uci.edu/ml/machine-learning-databases/adult/
该模型利用Spark mllib的GradientBoostedTrees作为GBDT部分,因为ml模块的GBTClassifier对所生成的模型做了相当严密的封装,导致难以获取某些类或方法。而GradientBoostedTrees所需的训练数据为mllib下的LabeledPoint,所以下面的数据预处理的目标是将cat数据进行编码并生成LabeledPoint。
数据预处理部分
import org.apache.spark.mllib.linalg.{SparseVector => OldSparseVector}
import org.apache.spark.sql.functions._
import spark.implicits._
val path = ""
val manualSchema = StructType(Array(
StructField("age", IntegerType, true),
StructField("workclass", StringType, true),
StructField("fnlwgt", IntegerType, true),
StructField("education", StringType, true),
StructField("education-num", IntegerType, true),
StructField("marital-status", StringType, true),
StructField("occupation", StringType, true),
StructField("relationship", StringType, true),
StructField("race", StringType, true),
StructField("sex", StringType, true),
StructField("capital-gain", IntegerType, true),
StructField("capital-loss", IntegerType, true),
StructField("hours-per-week", IntegerType, true),
StructField("native-country", StringType, true),
StructField("label", StringType, true)))
val df = spark.read
.option("header", false)
.option("delimiter", ",")
.option("nullValue", "?")
.schema(manualSchema)
.format("csv")
.load(path + "adult.data.txt")
// .limit(1000)
// 去掉代表序列号的col
var df1 = df.drop("fnlwgt")
.na.drop()
val allFeature = df1.columns.dropRight(1)
// colName和index的映射
val colIdx = new util.HashMap[String, Int](allFeature.length)
var idx = 0
while (idx < allFeature.length){
colIdx.put(allFeature(idx), idx)
idx += 1
}
val numCols = Array("age", "education-num", "capital-gain", "capital-loss", "hours-per-week")
val catCols = df1.columns.dropRight(1).diff(numCols)
val numLen = numCols.length
val catLen = catCols.length
// 处理label
def labeludf(elem: String):Int = {
if (elem == "<=50K") 0
else 1
}
val labelIndexer = udf(labeludf(_:String):Int)
// 也可以用 when 函数
// val labelIndexer = when($"lable" === "<=50K", 0).otherwise(1)
df1 = df1.withColumn("indexed_label", labelIndexer(col("label"))).drop("label")
// 处理cat列
// 所有cat列统一编码,例如有两列cat,第一列为性别,第二列为早、午、晚,那么第一列的编码为0或1,而第二列的编码为2、3或4。下面实现仿照StringIndexer,可能更高效
val inderMap: util.HashMap[String, util.HashMap[String, Int]] = new util.HashMap(catCols.length)
var i = numCols.length
for (column <- catCols) {
val uniqueElem = df1.select(column)
.groupBy(column)
.agg(count(column))
.select(column)
.map(_.getAs[String](0))
.collect()
val len = uniqueElem.length
var index = 0
val freqMap = new util.HashMap[String, Int](len)
while (index < len) {
freqMap.put(uniqueElem(index), i)
index += 1
i += 1
}
inderMap.put(column, freqMap)
}
val bcMap = spark.sparkContext.broadcast(inderMap)
val d = i
// 合并为LabeledPoint
val df2 = df1.rdd.map { row =>
val indics = new Array[Int](numLen + catLen)
val value = new Array[Double](numLen + catLen)
var i = 0
for (col <- numCols) {
indics(i) = i
value(i) = row.getAs[Int](colIdx.get(col)).toDouble
i += 1
}
for (col <- catCols) {
indics(i) = bcMap.value.get(col).get(row.getAs[String](colIdx.get(col)))
value(i) = 1
i += 1
}
new LabeledPoint(row.getAs[Int](numLen + catLen), new OldSparseVector(d, indics, value))
}
val ds = df2.toDF("label", "feature")
ds.write.save(path + "processed")
GBDT模型部分(省略调参部分)
val path = ""
val df = spark.read
.load(path)
.rdd
.map(row => LabeledPoint(row.getAs[Double](0), row.getAs[OldSparseVector](1)))
// Train a GradientBoostedTrees model.
val boostingStrategy = BoostingStrategy.defaultParams("Classification")
boostingStrategy.numIterations = 10
boostingStrategy.treeStrategy.numClasses = 2
boostingStrategy.treeStrategy.maxDepth = 3
boostingStrategy.learningRate = 0.3
// Empty categoricalFeaturesInfo indicates all features are continuous.
boostingStrategy.treeStrategy.categoricalFeaturesInfo = Map[Int, Int]()
val model = GradientBoostedTrees.train(df, boostingStrategy)
model.save(spark.sparkContext, path + "GBDTmodel")
GBDT与LR混合部分
object GBTLRTraining {
// 遍历一颗决策树,找出其出口的叶子节点id
def predictModify(node: OldNode, features: OldSparseVector): Int = {
val split = node.split
if (node.isLeaf) {
node.id - 1 // 改为0-base
} else {
if (split.get.featureType == FeatureType.Continuous) {
if (features(split.get.feature) <= split.get.threshold) {
predictModify(node.leftNode.get, features)
} else {
predictModify(node.rightNode.get, features)
}
} else {
if (split.get.categories.contains(features(split.get.feature))) {
predictModify(node.leftNode.get, features)
} else {
predictModify(node.rightNode.get, features)
}
}
}
}
// 获取每棵树的出口叶子节点id数组
def getGBTFeatures(gbtModel: GradientBoostedTreesModel, oldFeatures: OldSparseVector): Array[Int] = {
val GBTMaxIter = gbtModel.trees.length
val leafIdArray = new Array[Int](GBTMaxIter)
for (i <- 0 until GBTMaxIter) {
val treePredict = predictModify(gbtModel.trees(i).topNode, oldFeatures)
leafIdArray(i) = treePredict
}
leafIdArray
}
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.master("local[*]")
.appName("TEST")
// 本地配置
.config("spark.sql.shuffle.partitions", 12)
.config("spark.default.parallelism", 12)
.config("spark.memory.fraction", 0.75)
// .config("spark.memory.ofHeap.enabled", true)
// .config("spark.memory.ofHeapa.size", "2G")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
// .config("spark.executor.memory", "2G")
.getOrCreate()
spark.sparkContext.setLogLevel("ERROR")
import org.apache.spark.sql.functions._
import spark.implicits._
val path = ""
val df = spark.read
.load(path)
val model = GradientBoostedTreesModel.load(spark.sparkContext, path + "GBDTmodel")
val bcmodel = spark.sparkContext.broadcast(model)
var treeNodeNum = 0
var treeDepth = 0
// 获取最大的树的数据
for (elem <- model.trees) {
if (treeNodeNum < elem.numNodes){
treeNodeNum = elem.numNodes
treeDepth = elem.depth
}
}
val leafNum = math.pow(2, treeDepth).toInt
val nonLeafNum = treeNodeNum - leafNum
val totalColNum = leafNum * model.trees.length
// print(leafNum + " " + nonLeafNum + " " + tree.numNodes + " " + totalColNum)
// 利用之前训练好的GBT模型进行特征提取,并把原特征OldSparseVector转化为ml的SparseVector,让后续的LR使用
val addFeatureUDF = udf { features: OldSparseVector =>
val gbtFeatures = getGBTFeatures(bcmodel.value, features)
var i = 0
while (i < gbtFeatures.length){
val leafIdx = gbtFeatures(i) - nonLeafNum
// 有些树可能没有生长完全,leafIdx没有达到最大的树的最后一层,这里将这些情况默认为最大的树的最后一层的第一个叶子节点。
gbtFeatures(i) = (if (leafIdx < 0) 0 else leafIdx) + i * leafNum
i += 1
}
val idx = gbtFeatures
val values = Array.fill[Double](idx.length)(1.0)
Vectors.sparse(totalColNum, idx, values)
}
val dsWithCombinedFeatures = df
.withColumn("lr_feature", addFeatureUDF(col("feature")))
// dsWithCombinedFeatures.show(false)
val lr = new LogisticRegression()
.setMaxIter(500)
.setFeaturesCol("lr_feature")
.setLabelCol("label")
val lrmodel = lr.fit(dsWithCombinedFeatures)
val res = lrmodel.transform(dsWithCombinedFeatures)
// res.show(false)
val evaluator1 = new MulticlassClassificationEvaluator().setMetricName("accuracy")
.setLabelCol("label")
.setPredictionCol("prediction")
println("ACC:" + evaluator1.evaluate(res))
val evaluator2 = new BinaryClassificationEvaluator().setMetricName("areaUnderROC")
.setLabelCol("label")
.setRawPredictionCol("prediction")
println("AUC:" + evaluator2.evaluate(res))
}
}
参考资料: