SLAM代码之单目建图

思路#

  • 第一帧为参考帧
  • 对后面每一帧
    • 找到极限方向
      • 进行极线搜索
      • 找出NCC最高的
    • 高斯深度滤波
      • 计算不确定度
      • 高斯融合

dense_mapping.cpp#

Copy
#include<iostream> #include<vector> #include<fstream> using namespace std; #include<boost/timer.hpp> #include<sophus/se3.hpp> using Sophus::SE3d; #include<Eigen/Core> #include<Eigen/Geometry> using namespace Eigen; #include<opencv2/core/core.hpp> #include<opencv2/highgui/highgui.hpp> #include<opencv2/imgproc/imgproc.hpp> using namespace cv; /********************************************** * 本程序演示了单目相机在已知轨迹下的稠密深度估计 * 使用极线搜索 + NCC 匹配的方式,与书本的 12.2 节对应 ***********************************************/ //parameters const int boarder=20; //边缘宽度 const int width=640; //图像宽度 const int height=480; //图像高度 const double fx=482.1f; //相机内参 const double fy=-480.0f; const double cx=319.5f; const double cy=239.5f; const int ncc_window_size=3; //ncc取的窗口半宽度 const int ncc_area=(2*ncc_window_size+1)*(2*ncc_window_size+1);//NCC窗口面积 const double min_cov=0.1; //收敛判定:最小方差 const double max_cov=10; //发散判定:最大方差 ///从REMODE数据集读取数据 bool readDatasetFiles( const string path, vector<string> &color_image_files, vector<SE3d> &poses, cv::Mat &ref_depth ); /** *根据新的图像更新深度估计 *@param ref 参考图像 *@param curr 当前图像 *@param T_C_R 参考图像到当前图像的位姿 *@param depth 深度均值 *@param dept_cov2 深度方差 *@return 是否成功 **/ bool update( const Mat &ref, const Mat &curr, const SE3d &T_C_R, Mat &depth, Mat &depth_cov2 ); /** * @brief 极线搜索 * @param ref: 参考图像 * @param curr: 当前图像 * @param T_C_R: 位姿 * @param pt_ref: 参考图像中点的位置 * @param depth_mu: 深度均值 * @param depth_cov: 深度方差 * @param pt_curr: 当前点 * @param epipolar_direction:极线方向 * @retval 是否成功 */ bool epipolarSearch( const Mat &ref, const Mat &curr, const SE3d &T_C_R, const Vector2d &pt_ref, const double &depth_mu, const double &depth_cov, Vector2d &pt_curr, Vector2d &epipolar_direction ); /** * @brief 更新深度滤波器 * @param pt_ref: 参考图像点 * @param pt_curr: 当前图像点 * @param T_C_R: 位姿 * @param epipolar_direction: 级线方向 * @param depth: 深度均值 * @param depth_cov2: 深度方差 * @retval 是否成功 */ bool updateDepthFilter( const Vector2d &pt_ref, const Vector2d &pt_curr, const SE3d &T_C_R, const Vector2d &epipolar_direction, Mat &depth, Mat &depth_cov2 ); /** * 计算 NCC 评分 * @param ref 参考图像 * @param curr 当前图像 * @param pt_ref 参考点 * @param pt_curr 当前点 * @retval NCC评分 */ double NCC(const Mat &ref, const Mat &curr, const Vector2d &pt_ref, const Vector2d &pt_curr); // 双线性灰度插值 inline double getBilinearInterpolatedValue(const Mat &img, const Vector2d &pt) { uchar *d = &img.data[int(pt(1, 0)) * img.step + int(pt(0, 0))]; double xx = pt(0, 0) - floor(pt(0, 0)); double yy = pt(1, 0) - floor(pt(1, 0)); return ((1 - xx) * (1 - yy) * double(d[0]) + xx * (1 - yy) * double(d[1]) + (1 - xx) * yy * double(d[img.step]) + xx * yy * double(d[img.step + 1])) / 255.0; } // ------------------------------------------------------------------ // 一些小工具 // 显示估计的深度图 void plotDepth(const Mat &depth_truth, const Mat &depth_estimate); //像素到相机坐标系 inline Vector3d px2cam(const Vector2d px){ return Vector3d( (px(0,0)-cx)/fx, (px(1,0)-cy)/fy, 1 ); } //相机到像素 inline Vector2d cam2px(const Vector3d p_cam){ return Vector2d( (p_cam(0,0)*fx/p_cam(2,0)+cx), (p_cam(1,0)*fy/p_cam(2,0)+cy) ); } // 检测一个点是否在图像边框内 inline bool inside(const Vector2d &pt) { return pt(0, 0) >= boarder && pt(1, 0) >= boarder && pt(0, 0) + boarder < width && pt(1, 0) + boarder <= height; } // 显示极线匹配 void showEpipolarMatch(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_curr); // 显示极线 void showEpipolarLine(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_min_curr, const Vector2d &px_max_curr); /// 评测深度估计 void evaludateDepth(const Mat &depth_truth, const Mat &depth_estimate); // ------------------------------------------------------------------ int main(int argc,char **argv){ if(argc!=2){ cout<<"Usage:dense_mapping path_to_test_dataset"<<endl; return -1; } //从数据集读取数据 vector<string> color_image_files; vector<SE3d>pose_TWC; Mat ref_depth; bool ret=readDatasetFiles(argv[1],color_image_files,pose_TWC ,ref_depth); if(ret==false){ cout<<"Reading image files failed!"<<endl; return -1; } cout<<"read total"<<color_image_files.size()<<" files."<<endl; // 第一张图 Mat ref=imread(color_image_files[0],0);//gray-scale image SE3d pose_ref_TWC=pose_TWC[0]; double init_depth=3.0;//深度初始值 double init_cov2=3.0;//方差初始值 Mat depth(height,width,CV_64F,init_depth); Mat depth_cov2(height,width,CV_64F,init_cov2);//深度图方差 for(int index=1;index<color_image_files.size();index++){ cout<<"*** loop "<<index<<"***"<<endl; Mat curr=imread(color_image_files[index],0); if (curr.data == nullptr) continue; SE3d pose_curr_TWC=pose_TWC[index]; SE3d pose_T_C_R=pose_curr_TWC.inverse()*pose_ref_TWC;//TCR=TCW*TWR update(ref,curr,pose_T_C_R,depth,depth_cov2); evaludateDepth(ref_depth,depth); plotDepth(ref_depth, depth); imshow("image", curr); waitKey(1); } cout << "estimation returns, saving depth map ..." << endl; imwrite("depth.png", depth); cout << "done." << endl; return 0; } void evaludateDepth(const Mat &depth_truth, const Mat &depth_estimate) { double ave_depth_error = 0; // 平均误差 double ave_depth_error_sq = 0; // 平方误差 int cnt_depth_data = 0; for (int y = boarder; y < depth_truth.rows - boarder; y++) for (int x = boarder; x < depth_truth.cols - boarder; x++) { double error = depth_truth.ptr<double>(y)[x] - depth_estimate.ptr<double>(y)[x]; ave_depth_error += error; ave_depth_error_sq += error * error; cnt_depth_data++; } ave_depth_error /= cnt_depth_data; ave_depth_error_sq /= cnt_depth_data; cout << "Average squared error = " << ave_depth_error_sq << ", average error: " << ave_depth_error << endl; } bool update(const Mat &ref,const Mat &curr,const SE3d &T_C_R,Mat &depth,Mat &depth_cov2){ for(int x=boarder;x<width-boarder;x++) for(int y=boarder;y<height-boarder;y++){ //遍历每个像素 if(depth_cov2.ptr<double>(y)[x]<min_cov|| depth_cov2.ptr<double>(y)[x]>max_cov)//深度已收敛或发散 continue; //在极线上搜索(x,y)的匹配 Vector2d pt_curr; Vector2d epipolar_direction; bool ret = epipolarSearch( ref, curr, T_C_R, Vector2d(x, y), depth.ptr<double>(y)[x], sqrt(depth_cov2.ptr<double>(y)[x]), pt_curr, epipolar_direction ); if (ret == false) // 匹配失败 continue; // 取消该注释以显示匹配 // showEpipolarMatch(ref, curr, Vector2d(x, y), pt_curr); // 匹配成功,更新深度图 updateDepthFilter(Vector2d(x, y), pt_curr, T_C_R, epipolar_direction, depth, depth_cov2); } } bool readDatasetFiles( const string path, vector<string> &color_image_files, vector<SE3d> &poses, cv::Mat &ref_depth) { ifstream fin(path + "/first_200_frames_traj_over_table_input_sequence.txt"); if (!fin) return false; while (!fin.eof()) { // 数据格式:图像文件名 tx, ty, tz, qx, qy, qz, qw ,注意是 TWC 而非 TCW string image; fin >> image; double data[7]; for (double &d:data) fin >> d; color_image_files.push_back(path + string("/images/") + image); poses.push_back( SE3d(Quaterniond(data[6], data[3], data[4], data[5]), Vector3d(data[0], data[1], data[2])) ); if (!fin.good()) break; } fin.close(); // load reference depth fin.open(path + "/depthmaps/scene_000.depth"); ref_depth = cv::Mat(height, width, CV_64F); if (!fin) return false; for (int y = 0; y < height; y++) for (int x = 0; x < width; x++) { double depth = 0; fin >> depth; ref_depth.ptr<double>(y)[x] = depth / 100.0; } return true; } bool epipolarSearch( const Mat &ref, const Mat &curr, const SE3d &T_C_R, const Vector2d &pt_ref, const double &depth_mu, const double &depth_cov, Vector2d &pt_curr, Vector2d &epipolar_direction){ //找到参考帧求出的p的 Vector3d f_ref= px2cam(pt_ref); f_ref.normalize(); Vector3d P_ref=f_ref*depth_mu;///参考帧的p向量 Vector2d px_mean_curr=cam2px(T_C_R*P_ref); double d_min=depth_mu-3*depth_cov,d_max=depth_mu+3*depth_cov; if(d_min<0.1) d_min=0.1; Vector2d px_min_curr=cam2px(T_C_R*(f_ref*d_min));//按最小深度的投影 Vector2d px_max_curr=cam2px(T_C_R*(f_ref*d_max));//按最大深度投影 Vector2d epipolar_line=px_max_curr-px_min_curr;//极线(线段形式) epipolar_direction=epipolar_line;//极线方向 epipolar_direction.normalize(); double half_length=0.5*epipolar_line.norm();//极线线段的半长度 if(half_length>100)half_length=100; //在上面搜索 double best_ncc=-1.0; Vector2d best_px_curr; for(double l=-half_length;l<=half_length;l+=0.7){//l+=sqrt(2) Vector2d px_curr=px_mean_curr+l*epipolar_direction;//待匹配点 if(!inside(px_curr)) continue; //计算待匹配点与参考帧的NCC double ncc=NCC(ref,curr,pt_ref,pt_curr); if(ncc>best_ncc){ best_ncc=ncc; best_px_curr=px_curr; } } if(best_ncc<0.85f) //只相信 NCC 很高的匹配 return false; pt_curr=best_px_curr; return true; } double NCC(const Mat &ref, const Mat &curr, const Vector2d &pt_ref, const Vector2d &pt_curr){ //零均值-归一化互相关 //先算均值 double mean_ref=0,mean_curr=0; vector<double>values_ref,values_curr;//参考帧和当前帧的均值 for(int x=-ncc_window_size;x<=ncc_window_size;x++) for(int y=-ncc_window_size;y<=ncc_window_size;y++){ double value_ref=double(ref.ptr<uchar>(int(y+pt_ref(1,0)))[int(x+pt_ref(0,0))])/255.0; mean_ref+=value_ref; double value_curr = getBilinearInterpolatedValue(curr, pt_curr + Vector2d(x, y)); mean_curr += value_curr; values_ref.push_back(value_ref); values_curr.push_back(value_curr); } mean_ref /= ncc_area; mean_curr /= ncc_area; // 计算 Zero mean NCC double numerator = 0, demoniator1 = 0, demoniator2 = 0; for (int i = 0; i < values_ref.size(); i++) { double n = (values_ref[i] - mean_ref) * (values_curr[i] - mean_curr); numerator += n; demoniator1 += (values_ref[i] - mean_ref) * (values_ref[i] - mean_ref); demoniator2 += (values_curr[i] - mean_curr) * (values_curr[i] - mean_curr); } return numerator / sqrt(demoniator1 * demoniator2 + 1e-10); // 防止分母出现零 } bool updateDepthFilter(const Vector2d &pt_ref, const Vector2d &pt_curr, const SE3d &T_C_R, const Vector2d &epipolar_direction, Mat &depth, Mat &depth_cov2){ //三角化计算深度 SE3d T_R_C=T_C_R.inverse(); Vector3d f_ref=px2cam(pt_ref); f_ref.normalize(); Vector3d f_curr=px2cam(pt_curr); f_curr.normalize(); Vector3d t = T_R_C.translation(); Vector3d f2 = T_R_C.so3() * f_curr; Vector2d b = Vector2d(t.dot(f_ref), t.dot(f2)); Matrix2d A; A(0, 0) = f_ref.dot(f_ref); A(0, 1) = -f_ref.dot(f2); A(1, 0) = -A(0, 1); A(1, 1) = -f2.dot(f2); Vector2d ans=A.inverse()*b; Vector3d xm=ans[0]*f_ref; //ref侧求得p位置结果 Vector3d xn=t+ans[1]*f2; //cur侧求得p位置结果 Vector3d p_esti=(xm+xn)/2.0; //P的位置取两者平均 double depth_estimation = p_esti.norm(); // 深度值 // 计算不确定性(以一个像素为误差) Vector3d p=f_ref*depth_estimation;//p Vector3d a=p-t;//a double t_norm = t.norm(); double a_norm = a.norm(); double alpha = acos(f_ref.dot(t) / t_norm); double beta = acos(-a.dot(t) / (a_norm * t_norm)); Vector3d f_curr_prime=px2cam(pt_curr+epipolar_direction); f_curr_prime.normalize(); double beta_prime=acos(f_curr_prime.dot(-t)/t_norm);//t也是相机坐标系下的吗?是 double gamma=M_PI-alpha-beta_prime; double p_prime=t_norm*sin(beta_prime)/sin(gamma); double d_cov=p_prime-depth_estimation; double d_cov2=d_cov*d_cov; //高斯融合 double mu = depth.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))]; double sigma2 = depth_cov2.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))]; double mu_fuse = (d_cov2 * mu + sigma2 * depth_estimation) / (sigma2 + d_cov2); double sigma_fuse2 = (sigma2 * d_cov2) / (sigma2 + d_cov2); depth.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))] = mu_fuse; depth_cov2.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))] = sigma_fuse2; return true; } void plotDepth(const Mat &depth_truth, const Mat &depth_estimate) { imshow("depth_truth", depth_truth * 0.4); imshow("depth_estimate", depth_estimate * 0.4); imshow("depth_error", depth_truth - depth_estimate); waitKey(1); } void showEpipolarMatch(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_curr) { Mat ref_show, curr_show; cv::cvtColor(ref, ref_show, CV_GRAY2BGR); cv::cvtColor(curr, curr_show, CV_GRAY2BGR); cv::circle(ref_show, cv::Point2f(px_ref(0, 0), px_ref(1, 0)), 5, cv::Scalar(0, 0, 250), 2); cv::circle(curr_show, cv::Point2f(px_curr(0, 0), px_curr(1, 0)), 5, cv::Scalar(0, 0, 250), 2); imshow("ref", ref_show); imshow("curr", curr_show); waitKey(1); } void showEpipolarLine(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_min_curr, const Vector2d &px_max_curr) { Mat ref_show, curr_show; cv::cvtColor(ref, ref_show, CV_GRAY2BGR); cv::cvtColor(curr, curr_show, CV_GRAY2BGR); cv::circle(ref_show, cv::Point2f(px_ref(0, 0), px_ref(1, 0)), 5, cv::Scalar(0, 255, 0), 2); cv::circle(curr_show, cv::Point2f(px_min_curr(0, 0), px_min_curr(1, 0)), 5, cv::Scalar(0, 255, 0), 2); cv::circle(curr_show, cv::Point2f(px_max_curr(0, 0), px_max_curr(1, 0)), 5, cv::Scalar(0, 255, 0), 2); cv::line(curr_show, Point2f(px_min_curr(0, 0), px_min_curr(1, 0)), Point2f(px_max_curr(0, 0), px_max_curr(1, 0)), Scalar(0, 255, 0), 1); imshow("ref", ref_show); imshow("curr", curr_show); waitKey(1); }

CMakeLists.txt#

Copy
cmake_minimum_required(VERSION 2.8) project(dense_mapping) set(CMAKE_BUILD_TYPE "Release") set(CMAKE_CXX_FLAGS "-std=c++14 -march=native -O3") list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake) include_directories("/usr/include/eigen3") #opencv2 find_package(OpenCV REQUIRED) include_directories(${OpenCV_INCLUDE_DIRS}) #sophus find_package(Sophus REQUIRED) include_directories(${Sophus_INCLUDE_DIRS}) find_package( FMT REQUIRED ) add_executable(dense_mapping dense_mapping.cpp) target_link_libraries(dense_mapping ${Sophus_LIBRARIES} ${OpenCV_LIBS}) target_link_libraries(dense_mapping fmt::fmt)

上面的代码会产生段错误并且无法参照(ISSUE)修改的问题,应该是update的问题,或者不知道那里敲错了,复制作者的code:#

Copy
#include <iostream> #include <vector> #include <fstream> using namespace std; #include <boost/timer.hpp> // for sophus #include <sophus/se3.hpp> using Sophus::SE3d; // for eigen #include <Eigen/Core> #include <Eigen/Geometry> using namespace Eigen; #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> using namespace cv; /********************************************** * 本程序演示了单目相机在已知轨迹下的稠密深度估计 * 使用极线搜索 + NCC 匹配的方式,与书本的 12.2 节对应 * 请注意本程序并不完美,你完全可以改进它——我其实在故意暴露一些问题(这是借口)。 ***********************************************/ // ------------------------------------------------------------------ // parameters const int boarder = 20; // 边缘宽度 const int width = 640; // 图像宽度 const int height = 480; // 图像高度 const double fx = 481.2f; // 相机内参 const double fy = -480.0f; const double cx = 319.5f; const double cy = 239.5f; const int ncc_window_size = 3; // NCC 取的窗口半宽度 const int ncc_area = (2 * ncc_window_size + 1) * (2 * ncc_window_size + 1); // NCC窗口面积 const double min_cov = 0.1; // 收敛判定:最小方差 const double max_cov = 10; // 发散判定:最大方差 // ------------------------------------------------------------------ // 重要的函数 /// 从 REMODE 数据集读取数据 bool readDatasetFiles( const string &path, vector<string> &color_image_files, vector<SE3d> &poses, cv::Mat &ref_depth ); /** * 根据新的图像更新深度估计 * @param ref 参考图像 * @param curr 当前图像 * @param T_C_R 参考图像到当前图像的位姿 * @param depth 深度 * @param depth_cov 深度方差 * @return 是否成功 */ bool update( const Mat &ref, const Mat &curr, const SE3d &T_C_R, Mat &depth, Mat &depth_cov2 ); /** * 极线搜索 * @param ref 参考图像 * @param curr 当前图像 * @param T_C_R 位姿 * @param pt_ref 参考图像中点的位置 * @param depth_mu 深度均值 * @param depth_cov 深度方差 * @param pt_curr 当前点 * @param epipolar_direction 极线方向 * @return 是否成功 */ bool epipolarSearch( const Mat &ref, const Mat &curr, const SE3d &T_C_R, const Vector2d &pt_ref, const double &depth_mu, const double &depth_cov, Vector2d &pt_curr, Vector2d &epipolar_direction ); /** * 更新深度滤波器 * @param pt_ref 参考图像点 * @param pt_curr 当前图像点 * @param T_C_R 位姿 * @param epipolar_direction 极线方向 * @param depth 深度均值 * @param depth_cov2 深度方向 * @return 是否成功 */ bool updateDepthFilter( const Vector2d &pt_ref, const Vector2d &pt_curr, const SE3d &T_C_R, const Vector2d &epipolar_direction, Mat &depth, Mat &depth_cov2 ); /** * 计算 NCC 评分 * @param ref 参考图像 * @param curr 当前图像 * @param pt_ref 参考点 * @param pt_curr 当前点 * @return NCC评分 */ double NCC(const Mat &ref, const Mat &curr, const Vector2d &pt_ref, const Vector2d &pt_curr); // 双线性灰度插值 inline double getBilinearInterpolatedValue(const Mat &img, const Vector2d &pt) { uchar *d = &img.data[int(pt(1, 0)) * img.step + int(pt(0, 0))]; double xx = pt(0, 0) - floor(pt(0, 0)); double yy = pt(1, 0) - floor(pt(1, 0)); return ((1 - xx) * (1 - yy) * double(d[0]) + xx * (1 - yy) * double(d[1]) + (1 - xx) * yy * double(d[img.step]) + xx * yy * double(d[img.step + 1])) / 255.0; } // ------------------------------------------------------------------ // 一些小工具 // 显示估计的深度图 void plotDepth(const Mat &depth_truth, const Mat &depth_estimate); // 像素到相机坐标系 inline Vector3d px2cam(const Vector2d px) { return Vector3d( (px(0, 0) - cx) / fx, (px(1, 0) - cy) / fy, 1 ); } // 相机坐标系到像素 inline Vector2d cam2px(const Vector3d p_cam) { return Vector2d( p_cam(0, 0) * fx / p_cam(2, 0) + cx, p_cam(1, 0) * fy / p_cam(2, 0) + cy ); } // 检测一个点是否在图像边框内 inline bool inside(const Vector2d &pt) { return pt(0, 0) >= boarder && pt(1, 0) >= boarder && pt(0, 0) + boarder < width && pt(1, 0) + boarder <= height; } // 显示极线匹配 void showEpipolarMatch(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_curr); // 显示极线 void showEpipolarLine(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_min_curr, const Vector2d &px_max_curr); /// 评测深度估计 void evaludateDepth(const Mat &depth_truth, const Mat &depth_estimate); // ------------------------------------------------------------------ int main(int argc, char **argv) { if (argc != 2) { cout << "Usage: dense_mapping path_to_test_dataset" << endl; return -1; } // 从数据集读取数据 vector<string> color_image_files; vector<SE3d> poses_TWC; Mat ref_depth; bool ret = readDatasetFiles(argv[1], color_image_files, poses_TWC, ref_depth); if (ret == false) { cout << "Reading image files failed!" << endl; return -1; } cout << "read total " << color_image_files.size() << " files." << endl; // 第一张图 Mat ref = imread(color_image_files[0], 0); // gray-scale image SE3d pose_ref_TWC = poses_TWC[0]; double init_depth = 3.0; // 深度初始值 double init_cov2 = 3.0; // 方差初始值 Mat depth(height, width, CV_64F, init_depth); // 深度图 Mat depth_cov2(height, width, CV_64F, init_cov2); // 深度图方差 for (int index = 1; index < color_image_files.size(); index++) { cout << "*** loop " << index << " ***" << endl; Mat curr = imread(color_image_files[index], 0); if (curr.data == nullptr) continue; SE3d pose_curr_TWC = poses_TWC[index]; SE3d pose_T_C_R = pose_curr_TWC.inverse() * pose_ref_TWC; // 坐标转换关系: T_C_W * T_W_R = T_C_R update(ref, curr, pose_T_C_R, depth, depth_cov2); evaludateDepth(ref_depth, depth); plotDepth(ref_depth, depth); imshow("image", curr); waitKey(1); } cout << "estimation returns, saving depth map ..." << endl; imwrite("depth.png", depth); cout << "done." << endl; return 0; } bool readDatasetFiles( const string &path, vector<string> &color_image_files, std::vector<SE3d> &poses, cv::Mat &ref_depth) { ifstream fin(path + "/first_200_frames_traj_over_table_input_sequence.txt"); if (!fin) return false; while (!fin.eof()) { // 数据格式:图像文件名 tx, ty, tz, qx, qy, qz, qw ,注意是 TWC 而非 TCW string image; fin >> image; double data[7]; for (double &d:data) fin >> d; color_image_files.push_back(path + string("/images/") + image); poses.push_back( SE3d(Quaterniond(data[6], data[3], data[4], data[5]), Vector3d(data[0], data[1], data[2])) ); if (!fin.good()) break; } fin.close(); // load reference depth fin.open(path + "/depthmaps/scene_000.depth"); ref_depth = cv::Mat(height, width, CV_64F); if (!fin) return false; for (int y = 0; y < height; y++) for (int x = 0; x < width; x++) { double depth = 0; fin >> depth; ref_depth.ptr<double>(y)[x] = depth / 100.0; } return true; } // 对整个深度图进行更新 bool update(const Mat &ref, const Mat &curr, const SE3d &T_C_R, Mat &depth, Mat &depth_cov2) { for (int x = boarder; x < width - boarder; x++) for (int y = boarder; y < height - boarder; y++) { // 遍历每个像素 if (depth_cov2.ptr<double>(y)[x] < min_cov || depth_cov2.ptr<double>(y)[x] > max_cov) // 深度已收敛或发散 continue; // 在极线上搜索 (x,y) 的匹配 Vector2d pt_curr; Vector2d epipolar_direction; bool ret = epipolarSearch( ref, curr, T_C_R, Vector2d(x, y), depth.ptr<double>(y)[x], sqrt(depth_cov2.ptr<double>(y)[x]), pt_curr, epipolar_direction ); if (ret == false) // 匹配失败 continue; // 取消该注释以显示匹配 // showEpipolarMatch(ref, curr, Vector2d(x, y), pt_curr); // 匹配成功,更新深度图 updateDepthFilter(Vector2d(x, y), pt_curr, T_C_R, epipolar_direction, depth, depth_cov2); } } // 极线搜索 // 方法见书 12.2 12.3 两节 bool epipolarSearch( const Mat &ref, const Mat &curr, const SE3d &T_C_R, const Vector2d &pt_ref, const double &depth_mu, const double &depth_cov, Vector2d &pt_curr, Vector2d &epipolar_direction) { Vector3d f_ref = px2cam(pt_ref); f_ref.normalize(); Vector3d P_ref = f_ref * depth_mu; // 参考帧的 P 向量 Vector2d px_mean_curr = cam2px(T_C_R * P_ref); // 按深度均值投影的像素 double d_min = depth_mu - 3 * depth_cov, d_max = depth_mu + 3 * depth_cov; if (d_min < 0.1) d_min = 0.1; Vector2d px_min_curr = cam2px(T_C_R * (f_ref * d_min)); // 按最小深度投影的像素 Vector2d px_max_curr = cam2px(T_C_R * (f_ref * d_max)); // 按最大深度投影的像素 Vector2d epipolar_line = px_max_curr - px_min_curr; // 极线(线段形式) epipolar_direction = epipolar_line; // 极线方向 epipolar_direction.normalize(); double half_length = 0.5 * epipolar_line.norm(); // 极线线段的半长度 if (half_length > 100) half_length = 100; // 我们不希望搜索太多东西 // 取消此句注释以显示极线(线段) // showEpipolarLine( ref, curr, pt_ref, px_min_curr, px_max_curr ); // 在极线上搜索,以深度均值点为中心,左右各取半长度 double best_ncc = -1.0; Vector2d best_px_curr; for (double l = -half_length; l <= half_length; l += 0.7) { // l+=sqrt(2) Vector2d px_curr = px_mean_curr + l * epipolar_direction; // 待匹配点 if (!inside(px_curr)) continue; // 计算待匹配点与参考帧的 NCC double ncc = NCC(ref, curr, pt_ref, px_curr); if (ncc > best_ncc) { best_ncc = ncc; best_px_curr = px_curr; } } if (best_ncc < 0.85f) // 只相信 NCC 很高的匹配 return false; pt_curr = best_px_curr; return true; } double NCC( const Mat &ref, const Mat &curr, const Vector2d &pt_ref, const Vector2d &pt_curr) { // 零均值-归一化互相关 // 先算均值 double mean_ref = 0, mean_curr = 0; vector<double> values_ref, values_curr; // 参考帧和当前帧的均值 for (int x = -ncc_window_size; x <= ncc_window_size; x++) for (int y = -ncc_window_size; y <= ncc_window_size; y++) { double value_ref = double(ref.ptr<uchar>(int(y + pt_ref(1, 0)))[int(x + pt_ref(0, 0))]) / 255.0; mean_ref += value_ref; double value_curr = getBilinearInterpolatedValue(curr, pt_curr + Vector2d(x, y)); mean_curr += value_curr; values_ref.push_back(value_ref); values_curr.push_back(value_curr); } mean_ref /= ncc_area; mean_curr /= ncc_area; // 计算 Zero mean NCC double numerator = 0, demoniator1 = 0, demoniator2 = 0; for (int i = 0; i < values_ref.size(); i++) { double n = (values_ref[i] - mean_ref) * (values_curr[i] - mean_curr); numerator += n; demoniator1 += (values_ref[i] - mean_ref) * (values_ref[i] - mean_ref); demoniator2 += (values_curr[i] - mean_curr) * (values_curr[i] - mean_curr); } return numerator / sqrt(demoniator1 * demoniator2 + 1e-10); // 防止分母出现零 } bool updateDepthFilter( const Vector2d &pt_ref, const Vector2d &pt_curr, const SE3d &T_C_R, const Vector2d &epipolar_direction, Mat &depth, Mat &depth_cov2) { // 不知道这段还有没有人看 // 用三角化计算深度 SE3d T_R_C = T_C_R.inverse(); Vector3d f_ref = px2cam(pt_ref); f_ref.normalize(); Vector3d f_curr = px2cam(pt_curr); f_curr.normalize(); // 方程 // d_ref * f_ref = d_cur * ( R_RC * f_cur ) + t_RC // f2 = R_RC * f_cur // 转化成下面这个矩阵方程组 // => [ f_ref^T f_ref, -f_ref^T f2 ] [d_ref] [f_ref^T t] // [ f_2^T f_ref, -f2^T f2 ] [d_cur] = [f2^T t ] Vector3d t = T_R_C.translation(); Vector3d f2 = T_R_C.so3() * f_curr; Vector2d b = Vector2d(t.dot(f_ref), t.dot(f2)); Matrix2d A; A(0, 0) = f_ref.dot(f_ref); A(0, 1) = -f_ref.dot(f2); A(1, 0) = -A(0, 1); A(1, 1) = -f2.dot(f2); Vector2d ans = A.inverse() * b; Vector3d xm = ans[0] * f_ref; // ref 侧的结果 Vector3d xn = t + ans[1] * f2; // cur 结果 Vector3d p_esti = (xm + xn) / 2.0; // P的位置,取两者的平均 double depth_estimation = p_esti.norm(); // 深度值 // 计算不确定性(以一个像素为误差) Vector3d p = f_ref * depth_estimation; Vector3d a = p - t; double t_norm = t.norm(); double a_norm = a.norm(); double alpha = acos(f_ref.dot(t) / t_norm); double beta = acos(-a.dot(t) / (a_norm * t_norm)); Vector3d f_curr_prime = px2cam(pt_curr + epipolar_direction); f_curr_prime.normalize(); double beta_prime = acos(f_curr_prime.dot(-t) / t_norm); double gamma = M_PI - alpha - beta_prime; double p_prime = t_norm * sin(beta_prime) / sin(gamma); double d_cov = p_prime - depth_estimation; double d_cov2 = d_cov * d_cov; // 高斯融合 double mu = depth.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))]; double sigma2 = depth_cov2.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))]; double mu_fuse = (d_cov2 * mu + sigma2 * depth_estimation) / (sigma2 + d_cov2); double sigma_fuse2 = (sigma2 * d_cov2) / (sigma2 + d_cov2); depth.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))] = mu_fuse; depth_cov2.ptr<double>(int(pt_ref(1, 0)))[int(pt_ref(0, 0))] = sigma_fuse2; return true; } // 后面这些太简单我就不注释了(其实是因为懒) void plotDepth(const Mat &depth_truth, const Mat &depth_estimate) { imshow("depth_truth", depth_truth * 0.4); imshow("depth_estimate", depth_estimate * 0.4); imshow("depth_error", depth_truth - depth_estimate); waitKey(1); } void evaludateDepth(const Mat &depth_truth, const Mat &depth_estimate) { double ave_depth_error = 0; // 平均误差 double ave_depth_error_sq = 0; // 平方误差 int cnt_depth_data = 0; for (int y = boarder; y < depth_truth.rows - boarder; y++) for (int x = boarder; x < depth_truth.cols - boarder; x++) { double error = depth_truth.ptr<double>(y)[x] - depth_estimate.ptr<double>(y)[x]; ave_depth_error += error; ave_depth_error_sq += error * error; cnt_depth_data++; } ave_depth_error /= cnt_depth_data; ave_depth_error_sq /= cnt_depth_data; cout << "Average squared error = " << ave_depth_error_sq << ", average error: " << ave_depth_error << endl; } void showEpipolarMatch(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_curr) { Mat ref_show, curr_show; cv::cvtColor(ref, ref_show, CV_GRAY2BGR); cv::cvtColor(curr, curr_show, CV_GRAY2BGR); cv::circle(ref_show, cv::Point2f(px_ref(0, 0), px_ref(1, 0)), 5, cv::Scalar(0, 0, 250), 2); cv::circle(curr_show, cv::Point2f(px_curr(0, 0), px_curr(1, 0)), 5, cv::Scalar(0, 0, 250), 2); imshow("ref", ref_show); imshow("curr", curr_show); waitKey(1); } void showEpipolarLine(const Mat &ref, const Mat &curr, const Vector2d &px_ref, const Vector2d &px_min_curr, const Vector2d &px_max_curr) { Mat ref_show, curr_show; cv::cvtColor(ref, ref_show, CV_GRAY2BGR); cv::cvtColor(curr, curr_show, CV_GRAY2BGR); cv::circle(ref_show, cv::Point2f(px_ref(0, 0), px_ref(1, 0)), 5, cv::Scalar(0, 255, 0), 2); cv::circle(curr_show, cv::Point2f(px_min_curr(0, 0), px_min_curr(1, 0)), 5, cv::Scalar(0, 255, 0), 2); cv::circle(curr_show, cv::Point2f(px_max_curr(0, 0), px_max_curr(1, 0)), 5, cv::Scalar(0, 255, 0), 2); cv::line(curr_show, Point2f(px_min_curr(0, 0), px_min_curr(1, 0)), Point2f(px_max_curr(0, 0), px_max_curr(1, 0)), Scalar(0, 255, 0), 1); imshow("ref", ref_show); imshow("curr", curr_show); waitKey(1); }

CMakeLists.txt#

Copy
cmake_minimum_required(VERSION 2.8) project(dense_mapping) set(CMAKE_BUILD_TYPE "Release") set(CMAKE_CXX_FLAGS "-std=c++11 -march=native -O0") include_directories("/usr/include/eigen3") #opencv2 find_package(OpenCV REQUIRED) include_directories(${OpenCV_INCLUDE_DIRS}) #sophus find_package(Sophus REQUIRED) include_directories(${Sophus_INCLUDE_DIRS}) find_package( FMT REQUIRED ) add_executable(dense_mapping dense_mapping.cpp) target_link_libraries(dense_mapping ${Sophus_LIBRARIES} ${OpenCV_LIBS}) target_link_libraries(dense_mapping fmt::fmt)
posted @   小帆敲代码  阅读(133)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
历史上的今天:
2021-10-14 Unity中协程和线程的区别
2021-10-14 c/c++函数调用约定
2021-10-14 printf是如何实现变长参数的
2021-10-14 unity中的协程
2021-10-14 (*(void(*)())0)();
2021-10-14 函数指针
2021-10-14 union
点击右上角即可分享
微信分享提示
CONTENTS