The Preliminary Contest for ICPC Asia Xuzhou 2019
B.so easy
并查集,可能会卡掉map,建议使用unordered_map。
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+100;
const int mod = 1e9+7;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const ll llINF = 0x3f3f3f3f3f3f3f3f;
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define fep(i,a,b) for(int i=(a);i>=(b);i--)
inline bool read(ll &num) {
char in;bool IsN=false;
in=getchar();
if(in==EOF) return false;
while(in!='-'&&(in<'0'||in>'9')) in=getchar();
if(in=='-'){ IsN=true;num=0;}
else num=in-'0';
while(in=getchar(),in>='0'&&in<='9'){
num*=10,num+=in-'0';
}
if(IsN) num=-num;
return true;
}
unordered_map<int,int> par;
int find(int x){
if(par[x]==0){
par[x]=x;
return x;
}
return x==par[x]?x:par[x]=find(par[x]);
}
int main(){
int n,q;
scanf("%d %d",&n,&q);
int op,x;
while(q--){
scanf("%d %d",&op,&x);
if(op==1){
par[find(x)]=x+1;
}else{
if(find(x)>n) puts("-1");
else printf("%d\n",find(x));
}
}
return 0;
}
C.Buy Watermelon
签到,大于2的偶数都可以被拆分成两个偶数和。
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+100;
const int mod = 1e9+7;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const ll llINF = 0x3f3f3f3f3f3f3f3f;
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define fep(i,a,b) for(int i=(a);i>=(b);i--)
inline bool read(ll &num) {
char in;bool IsN=false;
in=getchar();
if(in==EOF) return false;
while(in!='-'&&(in<'0'||in>'9')) in=getchar();
if(in=='-'){ IsN=true;num=0;}
else num=in-'0';
while(in=getchar(),in>='0'&&in<='9'){
num*=10,num+=in-'0';
}
if(IsN) num=-num;
return true;
}
int main(){
// freopen("1.in", "r", stdin);
ll t,n;
read(n);
if(n>2&&(n%2==0)){
cout<<"YES"<<endl;
}
else{
cout<<"NO"<<endl;
}
return 0;
}
D. Carneginon
KMP,懒得写了(狗头)。。
E. XKC's basketball team
对于每个\(i\)查找最右的大于等于\(a_i+m\)的位置。线段树维护区间最大值优先查右子树即可。
#include<bits/stdc++.h>
using namespace std;
const int N = 2e6+100;
const int mod = 1e9+7;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const ll llINF = 0x3f3f3f3f3f3f3f3f;
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define fep(i,a,b) for(int i=(a);i>=(b);i--)
inline bool read(ll &num) {
char in;bool IsN=false;
in=getchar();
if(in==EOF) return false;
while(in!='-'&&(in<'0'||in>'9')) in=getchar();
if(in=='-'){ IsN=true;num=0;}
else num=in-'0';
while(in=getchar(),in>='0'&&in<='9'){
num*=10,num+=in-'0';
}
if(IsN) num=-num;
return true;
}
int mxx[N],a[N];
int n,m;
void pushup(int rt){
mxx[rt]=max(mxx[rt<<1],mxx[rt<<1|1]);
}
void buildtree(int rt,int l,int r){
mxx[rt]=0;
if(l==r){
mxx[rt]=a[l];return ;
}
int mid=(l+r)>>1;
buildtree(rt<<1,l,mid);
buildtree(rt<<1|1,mid+1,r);
pushup(rt);
}
int query(int rt,int l,int r,int x){
// cout<<rt<<' '<<l<<' '<<r<<' '<<mxx[rt]<<endl;
if(l==r){
if(mxx[rt]>=x){
return l;
}
else return -1;
}
int mid=(l+r)>>1;
if(mxx[rt<<1|1]>=x){
return query(rt<<1|1,mid+1,r,x);//先查右面
}else{
return query(rt<<1,l,mid,x);
}
}
int main(){
//freopen("1.in", "r", stdin);
scanf("%d %d",&n,&m);
rep(i,1,n) scanf("%d",&a[i]);
buildtree(1,1,n);
vector<int> ans;
rep(i,1,n){
int id=query(1,1,n,a[i]+m);
if(id<=i) ans.push_back(-1);
else{
ans.push_back(id-i-1);
}
}
printf("%d",ans[0]);
rep(i,1,(int)ans.size()-1) printf(" %d",ans[i]);
puts("");
return 0;
}
I. query
对于\([1,n]\),枚举它们所有的倍数,总对数也就大概只有\(O(n \cdot log(n))\),因此转化为一个正方形,每次查询\([l,l]\)到\([r,r]\)之间点的个数即可。接下来直接离线然后用树状数组维护前缀和即可。
#include<bits/stdc++.h>
using namespace std;
const int N = 2e6+100;
const int mod = 1e9+7;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const ll llINF = 0x3f3f3f3f3f3f3f3f;
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define fep(i,a,b) for(int i=(a);i>=(b);i--)
inline bool read(ll &num) {
char in;bool IsN=false;
in=getchar();
if(in==EOF) return false;
while(in!='-'&&(in<'0'||in>'9')) in=getchar();
if(in=='-'){ IsN=true;num=0;}
else num=in-'0';
while(in=getchar(),in>='0'&&in<='9'){
num*=10,num+=in-'0';
}
if(IsN) num=-num;
return true;
}
int n,m;
int c[N];
int lowbit(ll x){
return (x&(-x));
}
void add(ll x,ll v){
for(;x<N;x+=lowbit(x)){
c[x]+=v;
//cout<<x<<' '<<v<<endl;
}
}
ll query(ll x){
ll ans=0;
for(;x;x-=lowbit(x)){
ans+=c[x];
}
return ans;
}
int pos[N],a[N];
int l[N],r[N];
struct point{
int x,y,flag;
}s[N];
bool cmp(point a,point b){
if(a.x==b.x){
if(a.y==b.y){
return a.flag<b.flag;
}
return a.y<b.y;
}
return a.x<b.x;
}
int yy[N],id[N];
map<pair<int,int>,int> mmp;
int main(){
scanf("%d %d",&n,&m);
rep(i,1,n){
scanf("%d",&a[i]);
pos[a[i]]=i;
}
int cnt=0;
rep(i,1,n){
for(int j=2*i;j<=n;j+=i){
s[++cnt]={pos[i],pos[j],0};
}
}
rep(i,1,m){
scanf("%d %d",&l[i],&r[i]);
s[++cnt]={r[i],r[i],1};
s[++cnt]={l[i]-1,r[i],1};
s[++cnt]={r[i],l[i]-1,1};
s[++cnt]={l[i]-1,l[i]-1,1};
}
rep(i,1,cnt) yy[i]=s[i].y;
sort(yy+1,yy+cnt+1);
int siz=unique(yy+1,yy+cnt+1)-yy-1;
sort(s+1,s+cnt+1,cmp);
rep(i,1,cnt){
id[i]=lower_bound(yy+1,yy+siz+1,s[i].y)-yy;
}
rep(i,1,cnt){
if(s[i].flag==0){
add(id[i],1);
}else{
mmp[{s[i].x,s[i].y}]=query(id[i]);
}
}
rep(i,1,m){
printf("%d\n",mmp[{r[i],r[i]}]-mmp[{l[i]-1,r[i]}]-mmp[{r[i],l[i]-1}]+mmp[{l[i]-1,l[i]-1}]);
}
return 0;
}
J. Random Access Iterator
首先预处理出每个点所能到达的最大深度和子节点的数量,令\(dp[x]\)表示能到达叶子节点的概率,当从\(u\)向\(v\)转移时,只有\(v\)能到达的的最大深度等于树的深度时才能转移。对于叶子节点:\(dp[x]=1\),向上转移即可。
\[dp[u]=1-(1- \frac{\sum{dp[v]}}{|siz[u]|})^{|siz[u]|}
\]
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+100;
const int mod = 1e9+7;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const ll llINF = 0x3f3f3f3f3f3f3f3f;
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define fep(i,a,b) for(int i=(a);i>=(b);i--)
inline bool read(ll &num) {
char in;bool IsN=false;
in=getchar();
if(in==EOF) return false;
while(in!='-'&&(in<'0'||in>'9')) in=getchar();
if(in=='-'){ IsN=true;num=0;}
else num=in-'0';
while(in=getchar(),in>='0'&&in<='9'){
num*=10,num+=in-'0';
}
if(IsN) num=-num;
return true;
}
ll qpow(ll a,ll b){
ll ans=1;
while(b){
if(b&1) ans=(ans%mod*a%mod)%mod;
a=(a*a)%mod;
b>>=1;
}
return ans%mod;
}
ll inv(ll a){
return qpow(a,mod-2);
}
vector<int> G[N];
int depth[N],maxxh[N],siz[N];
void dfs(int u,int par){
depth[u]=depth[par]+1;
maxxh[u]=depth[u];
for(int v:G[u]){
if(v==par) continue;
siz[u]++;
dfs(v,u);
maxxh[u]=max(maxxh[u],maxxh[v]);
}
}
ll dp[N];
ll solve(ll u,ll fa){
if(siz[u]==0) return dp[u]=1;
ll ans=0;
for(int v:G[u]){
if(v==fa) continue;
if(maxxh[v]==maxxh[1]){
ans+=solve(v,u);
}
}
ans=ans*inv(siz[u])%mod;
return dp[u]=(1-qpow(1-ans+mod,siz[u])+mod)%mod;
}
int main(){
int n,u,v;
cin>>n;
rep(i,1,n-1){
cin>>u>>v;
G[u].push_back(v);
G[v].push_back(u);
}
dfs(1,1);
cout<<solve(1,1)<<endl;
return 0;
}
M. Longest subsequence
在\(S\)中找到最长的子序列使其字典序大于\(T\),输出长度即可。
假设子序列为\(T'\),如果\(T'>T\),则\(T'\)一定存在某个位置\(p\)使得\(T'[1...p-1]=T[1...p]\),而\(T'[p]>T[p]\),枚举\(p\),利用序列自动机计枚举\(T'[p]\)并快速求的位置,计算答案即可。
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+100;
const int mod = 1e9+7;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const ll llINF = 0x3f3f3f3f3f3f3f3f;
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define fep(i,a,b) for(int i=(a);i>=(b);i--)
inline bool read(ll &num) {
char in;bool IsN=false;
in=getchar();
if(in==EOF) return false;
while(in!='-'&&(in<'0'||in>'9')) in=getchar();
if(in=='-'){ IsN=true;num=0;}
else num=in-'0';
while(in=getchar(),in>='0'&&in<='9'){
num*=10,num+=in-'0';
}
if(IsN) num=-num;
return true;
}
int nxt[N][27];
void init(char *s){
int l=strlen(s);
for(int i=0;i<26;i++) nxt[l][i]=INF;
for(int i=l-1;i>=0;i--){
for(int j=0;j<26;j++){
nxt[i][j]=nxt[i+1][j];
}
nxt[i][s[i]-'a']=i;
}
}
char s[N],t[N];
int main(){
//freopen("1.in", "r", stdin);
int n,m;
cin>>n>>m;
scanf("%s %s",s,t);
init(s);
int pos=-1;
int ans=0;
int cnt=0;
bool flag=0;
vector<int> id;
for(int i=0;i<n;i++){
for(int j=t[cnt]-'a'+1;j<26;j++){
if(nxt[i][j]!=INF){
flag=1;
ans=max(ans,cnt+n-nxt[i][j]);
}
}
if(s[i]==t[cnt]){
cnt++;
id.push_back(i);
}
if(cnt==m) break;
}
if(!flag){
if(id.size()==m){
if(id[m-1]==n-1)cout<<-1<<endl;
else cout<<m+(n-id[m-1]-1)<<endl;
}
else cout<<-1<<endl;
}
else{
if(id.size()==m&&id[m-1]!=-1){
ans=max(ans,m+(n-id[m-1]-1));
}
cout<<ans<<endl;
}
return 0;
}