HashMap实现原理及源码分析
一、HashMap概述
HashMap基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。(除了不同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。
值得注意的是HashMap不是线程安全的,如果想要线程安全的HashMap,可以通过Collections类的静态方法synchronizedMap获得线程安全的HashMap。
Map map = Collections.synchronizedMap(new HashMap());
二、HashMap的数据结构
HashMap的底层主要是基于数组和链表来实现的,它之所以有相当快的查询速度主要是因为它是通过计算散列码来决定存储的位置。HashMap中主要是通过key的hashCode来计算hash值的,只要hashCode相同,计算出来的hash值就一样。如果存储的对象对多了,就有可能不同的对象所算出来的hash值是相同的,这就出现了所谓的hash冲突。学过数据结构的同学都知道,解决hash冲突的方法有很多,HashMap底层是通过链表来解决hash冲突的。
图中,0~15部分即代表哈希表,也称为哈希数组,数组的每个元素都是一个单链表的头节点,链表是用来解决冲突的,如果不同的key映射到了数组的同一位置处,就将其放入单链表中。
我们看看HashMap中Entry类的代码:
/** Entry是单向链表。 * 它是 “HashMap链式存储法”对应的链表。 *它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数 **/ static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; // 指向下一个节点 Entry<K,V> next; final int hash; // 构造函数。 // 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)" Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } // 判断两个Entry是否相等 // 若两个Entry的“key”和“value”都相等,则返回true。 // 否则,返回false public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } // 实现hashCode() public final int hashCode() { return (key==null ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode()); } public final String toString() { return getKey() + "=" + getValue(); } // 当向HashMap中添加元素时,绘调用recordAccess()。 // 这里不做任何处理 void recordAccess(HashMap<K,V> m) { } // 当从HashMap中删除元素时,绘调用recordRemoval()。 // 这里不做任何处理 void recordRemoval(HashMap<K,V> m) { } }
HashMap其实就是一个Entry数组,Entry对象中包含了键和值,其中next也是一个Entry对象,它就是用来处理hash冲突的,形成一个链表。
三、HashMap源码分析
关键属性
transient Entry[] table;//存储元素的实体数组 transient int size;//存放元素的个数 int threshold; //临界值 当实际大小超过临界值时,会进行扩容threshold = 加载因子*容量 final float loadFactor; //加载因子 transient int modCount;//被修改的次数
其中loadFactor加载因子是表示Hsah表中元素的填满的程度.
若:加载因子越大,填满的元素越多,好处是,空间利用率高了,但:冲突的机会加大了.链表长度会越来越长,查找效率降低。
反之,加载因子越小,填满的元素越少,好处是:冲突的机会减小了,但:空间浪费多了.表中的数据将过于稀疏(很多空间还没用,就开始扩容了)
冲突的机会越大,则查找的成本越高.
因此,必须在 "冲突的机会"与"空间利用率"之间寻找一种平衡与折衷. 这种平衡与折衷本质上是数据结构中有名的"时-空"矛盾的平衡与折衷.
如果机器内存足够,并且想要提高查询速度的话可以将加载因子设置小一点;相反如果机器内存紧张,并且对查询速度没有什么要求的话可以将加载因子设置大一点。不过一般我们都不用去设置它,让它取默认值0.75就好了。
构造方法:
/** * Constructs an empty <tt>HashMap</tt> with the specified initial * capacity and load factor. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; threshold = initialCapacity; init(); }
/** * Constructs an empty <tt>HashMap</tt> with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); }
/** * Constructs an empty <tt>HashMap</tt> with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR); }
我们可以看到在构造HashMap的时候如果我们指定了加载因子和初始容量的话就调用第一个构造方法,否则的话就是用默认的。默认初始容量为16,默认加载因子为0.75。我们可以看到上面代码中13-15行,这段代码的作用是确保容量为2的n次幂,使capacity为大于initialCapacity的最小的2的n次幂,至于为什么要把容量设置为2的n次幂,我们等下再看。
重点分析下HashMap中用的最多的两个方法put和get。
主干方法:
put(K key, V value)方法,向HashMap中塞值。
public V put(K key, V value) {
// 若“key为null”,则将该键值对添加到table[0]中。 if (key == null) return putForNullKey(value); // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。 int hash = hash(key.hashCode()); //搜索指定hash值在对应table中的索引 int i = indexFor(hash, table.length); // 循环遍历Entry数组,若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出! for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { //如果key相同则覆盖并返回旧值 V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } //修改次数+1 modCount++; //将key-value添加到table[i]处 addEntry(hash, key, value, i); return null; }
上面程序中用到了一个重要的内部接口:Map.Entry,每个 Map.Entry 其实就是一个 key-value 对。从上面程序中可以看出:当系统决定存储 HashMap 中的 key-value 对时,完全没有考虑 Entry 中的 value,仅仅只是根据 key 来计算并决定每个 Entry 的存储位置。这也说明了前面的结论:我们完全可以把 Map 集合中的 value 当成 key 的附属,当系统决定了 key 的存储位置之后,value 随之保存在那里即可。
private V putForNullKey(V value) { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) { //如果有key为null的对象存在,则覆盖掉 V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(0, null, value, 0); //如果键为null的话,则hash值为0 return null; }
注意:如果key为null的话,hash值为0,对象存储在数组中索引为0的位置。即table[0]
我们再回去看看put方法中第4行,它是通过key的hashCode值计算hash码,下面是计算hash码的函数:
//计算hash值的方法 通过键的hashCode来计算 static int hash(int h) { // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); }
得到hash码之后就会通过hash码去计算出应该存储在数组中的索引,计算索引的函数如下:
static int indexFor(int h, int length) { //根据hash值和数组长度算出索引值 return h & (length-1); //这里不能随便算取,用hash&(length-1)是有原因的,这样可以确保算出来的索引是在数组大小范围内,不会超出 }
// 若“key为null”,则将该键值对添加到table[0]中。