PyTorch实战:经典模型LeNet5实现手写体识别
在上一篇博客CNN核心概念理解中,我们以LeNet为例介绍了CNN的重要概念。在这篇博客中,我们将利用著名深度学习框架PyTorch实现LeNet5,并且利用它实现手写体字母的识别。训练数据采用经典的MNIST数据集。本文主要分为两个部分,一是如何使用PyTorch实现LeNet模型,二是实现数据准备、定义网络、定义损失函数、训练、测试等完整流程。
一、LeNet模型定义
LeNet是识别手写字母的经典网络,虽然年代久远,但从学习的角度仍不失为一个优秀的范例。要实现这个网络,首先来看看这个网络的结构:
这是一个简单的前向传播的网络,它接受32x32图片作为输入,经过卷积、池化和全连接层的计算,最终给出输出结果。实现的过程并不复杂:
我们继承了nn.Module模块,在__init__中完成了卷积层和全连接层的初始化。值得注意的是由于池化层没有参数,因此并没有一起初始化。初始化参数包括输入个数、输出个数,卷积层的参数还有卷积核大小。除此之外在第一个卷积层C1中还定义了padding,这是因为数据集中图片是28x28的,padding=2表明输入的时候在图片四周各填充2个像素的空白,将输入变成了32x32。
在forward中我们实现了前向传播。这里我们根据定义对输入依次进行卷积、激活、池化等操作,最后返回计算结果。在全连接层之前,有一个对数据的展开操作,我们使用Tensor的view函数实现,这个函数可以将Tensor转变成任意合法的形状。我们只定义了forward函数,而没有定义backword函数,这是因为PyTorch的自动微分功能自动帮我们完成了反向传播的定义。
LeNet模型这样就定义完成了。但是需要注意的是,这个网络和最初LeCun论文中的实现略有不同:
- 原始论文中C3与S2并不是全连接而是部分连接,这样能减少部分计算量。而现代CNN模型中,比如AlexNet,ResNet等,都采取全连接的方式了。我们的实现在这里做了一些简化。
- 原文中使用双曲正切作为激活函数,而我们使用了收敛速度更快的ReLu函数。
- 按照原文描述,网络最后一层为高斯连接层。而我们为了简单起见还是用了全连接层。
LeNet其实是一个比较“古老”的模型了,我们不必追求完美的复现,理解其中关键的概念即可。
二、准备数据
为PyTorch准备数据非常方便。对于一些经典数据集,PyTorch已经将它们封装好了,我们可以直接拿来用。当然MNIST数据集也在此列,但是我们仍然定义了自己的数据集,因为这种方法可以处理更通用的情况。为了定义自己的数据集,首先要继承torch.utils.data.database类,然后实现至少__getitem__和__len__两个方法。
由于官网上提供的MNIST数据集是gzip压缩格式,因此我们在读取的时候首先要解压,然后转成numpy形式,最后转成Tensor保存起来。之后在__getitem__中返回相应的数据和类别就可以了,__len__函数直接返回数据集的大小。由于MNIST数据集有训练和测试两部分,因此需要分类处理。
三、使用数据训练网络
我们首先用DataLoader类加载数据集,DataLoader负责将数据转化成适当的形式放入模型训练。使用DataLoader可以方便地控制微批次大小、线程数等参数。
这时候可以测试数据有没有成功加载进来,如图所示。
下一步定义评价函数和优化器,这一步很重要,但不是本文重点。直接给出代码:
最后的给出训练过程的简化版。这个两层循环就是实际的训练过程,外层循环控制遍历数据集的次数,内层循环控制每一次参数更新。
三、模型评估
模型经过训练之后,将测试集输入放入模型,将输出和标签比对可以计算出模型的准确率等信息,进而对模型不断优化。此外如果想要了解模型到底学到了什么东西,还可以将中间层结果输出。如图所示:
这部分代码没有给出,完整代码可以到Github页面查看。
__EOF__

本文链接:https://www.cnblogs.com/cocode/p/10183410.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【推荐】一下。您的鼓励是博主的最大动力!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· 写一个简单的SQL生成工具
· AI 智能体引爆开源社区「GitHub 热点速览」
· C#/.NET/.NET Core技术前沿周刊 | 第 29 期(2025年3.1-3.9)