[AGC040B]Two Contests
Description
给出若干条线段 \((L[i], R[i])\) ,把他们分成两个非空的集合,最大化集合内线段交的和。
\(n\le 10 ^ 5\)
Solution
考虑最小的一个右端点 p 和最大的一个左端点 q 。
讨论:
- p 和 q 在同一集合内,那么选择一条除了这两条外最长的线段单独一个集合,剩下的和 p, q 一起一个集合。
- p 和 q 不在同一集合内,那么考虑令 \(a_i = max(p - l_i+1, 0), b_i = max(r_i - q + 1, 0)\) , 问题就转换成了把 {1,2...n} 划分成两个集合 \(S, T\) ,并且最大化 \(min\{a_i\} + min\{b_j\}\), \(i\in S, j \in T\),可以把 \((a_i, b_i)\) 按 \(a_i\) 从大到小排序,然后 \(T\) 选的就是一段后缀。
code
#include <cstdio>
#include <cstring>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
#define End exit(0)
#define LL long long
#define mp make_pair
#define SZ(x) ((int) x.size())
#define GO cerr << "GO" << endl
#define DE(x) cout << #x << " = " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
void proc_status()
{
freopen("/proc/self/status","r",stdin);
string s; while(getline(cin, s)) if (s[2] == 'P') { cerr << s << endl; return; }
}
template<typename T> inline T read()
{
register T x = 0;
register char c; register int f(1);
while (!isdigit(c = getchar())) if (c == '-') f = -1;
while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar()));
return x * f;
}
template<typename T> inline bool chkmin(T &a,T b) { return a > b ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a,T b) { return a < b ? a = b, 1 : 0; }
const int maxN = 1e5 + 2;
struct Info
{
int a, b;
bool operator > (const Info& B) const {
return a > B.a;
}
} info[maxN + 2];
int n, N;
int L[maxN + 2], R[maxN + 2];
void input()
{
n = read<int>();
for (int i = 1; i <= n; ++i)
L[i] = read<int>(), R[i] = read<int>();
}
int solve()
{
int p = 1e9, q = 0;
for (int i = 1; i <= n; ++i) chkmin(p, R[i]);
for (int i = 1; i <= n; ++i) chkmax(q, L[i]);
for (int i = 1; i <= n; ++i) info[i].a = max(p - L[i] + 1, 0);
for (int i = 1; i <= n; ++i) info[i].b = max(R[i] - q + 1, 0);
sort(info + 1, info + 1 + n, greater<Info>());
static int suf[maxN + 2];
suf[n + 1] = 1e9;
for (int i = n; i >= 1; --i) suf[i] = min(suf[i + 1], info[i].b);
int ans = 0;
for (int i = 1; i <= n; ++i) chkmax(ans, max(p - q + 1, 0) + R[i] - L[i] + 1);
for (int i = 1; i < n; ++i) chkmax(ans, suf[i + 1] + info[i].a);
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("xhc.in", "r", stdin);
freopen("xhc.out", "w", stdout);
#endif
input();
printf("%d\n", solve());
return 0;
}