[CF580C]Shortest Cycle(图论,最小环)
Description:
给 \(n\) 个点的图,点有点权 \(a_i\) ,两点之间有边当且仅当 \(a_i\ \text{and}\ a_j \not= 0\),边权为1,求最小环。
Solution:
按每一位考虑若当前这一位为 1 的点超过了 2 个,那么答案就为 3 。
否则只会连一条边,于是最多只有 \(60\) 条边,枚举每条边删掉,求最短路 (边权为1,bfs) 即可。
#include <iostream>
#include <set>
#include <queue>
#include <cstring>
#include <cstdio>
#include <fstream>
typedef long long LL;
typedef unsigned long long uLL;
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end()
#define MP(x, y) std::make_pair(x, y)
#define DE(x) cerr << x << endl;
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define GO cerr << "GO" << endl;
using namespace std;
inline void proc_status()
{
ifstream t("/proc/self/status");
cerr << string(istreambuf_iterator<char>(t), istreambuf_iterator<char>()) << endl;
}
template<typename T> inline bool chkmin(T &a, T b) { return a > b ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }
const int maxN = 1e5 + 2;
int n;
LL a[maxN];
int dis[maxN];
bool vis[maxN];
int ans(0x3f3f3f3f);
vector<int> g[maxN];
set<pair<int, int> > S;
void add(int u, int v)
{
g[u].push_back(v);
g[v].push_back(u);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("xhc.in", "r", stdin);
freopen("xhc.out", "w", stdout);
#endif
ios::sync_with_stdio(false);
cin >> n;
for (int i = 1; i <= n; ++i)
cin >> a[i];
for (int i = 0; i < 62; ++i)
{
int cnt = 0;
for (int j = 1; j <= n; ++j)
{
if (a[j] >> i & 1)
cnt++;
}
if (cnt >= 3)
{
cout << 3 << endl;
return 0;
}
if (cnt != 2)
continue;
int first = 0, second = 0;
for (int j = 1; j <= n; ++j)
if (a[j] >> i & 1)
{
if (!first)
{
first = j;
}
else
{
second = j;
break;
}
}
S.insert(MP(first, second));
}
for (auto p : S)
add(p.first, p.second);
for (auto p : S)
{
int s = p.first, t = p.second;
memset(vis, 0, sizeof vis);
memset(dis, 0x3f, sizeof dis);
vis[s] = 1;
queue<int> q;
q.push(s);
dis[s] = 0;
while (q.size())
{
int u = q.front();
q.pop();
for (int v : g[u])
{
if (u == s and v == t)
continue;
if (!vis[v])
{
q.push(v);
vis[v] = 1;
dis[v] = dis[u] + 1;
}
}
}
if (dis[t] < 0x3f3f3f3f) chkmin(ans, dis[t] + 1);
}
if (ans < 0x3f3f3f3f) cout << ans << endl;
else cout << -1 << endl;
return 0;
}