[ZJOI2015]地震后的幻想乡

题面

给一个图,边权为 \([0,1]\) 的均匀分布的随机实数,求最小生成树的最大期望边权。

提示:对于 \(n\)\([0,1]\) 之间的随机变量 \(x_1,x_2,\dots,x_n\) ,第 \(k\) 小的那个的期望值是\(\frac{k}{(n+1)}\)

\(\text{Solution:}\)

法一:期望 \(\textbf{dp}\)

将题意写成数学公式,

\(Kruscal\) 的过程中求:

\[E = \sum_{i=1}^m\frac{i\times P(加入第i条边恰好连通)}{m+1} \]

其中 \(\frac{i}{m + 1}\) 是期望边权,\(P(加入第i条边恰好连通)\) 是答案为第 \(i\) 大边的概率。

\[\begin{aligned} E\times (m+1) &= \sum_{i=1}^mi\times P(加入第i条边恰好连通)\\ &=\sum_{i=1}^mi\times (P(加入i条边使图连通)-P(加入i-1条边使原图连通))\\ &=\sum_{i=1}^mi\times (1-P(加入i条边使图不连通)-1+P(加入i-1条边使原图不连通))\\ &=\sum_{i=1}^mi\times (P(加入i-1条边使原图不连通) - P(加入i条边使图不连通))\\ \end{aligned} \]

展开,得:

\[E\times (m+1) = \sum_{i=0}^{m-1}P(加入i条边使图不连通) - m\times P(加入m条边使图不连通) \]

由于 \(m\times P(加入m条边使图不连通) = 0\) (题目保证连通)

\[E\times (m+1) = \sum_{i=0}^{m-1}P(加入i条边使图不连通) \]


\(f[S][i]\)\(G(S)\) 中选 \(i\) 条边使原图不连通的方案数.

\(g[S][i]\)\(G(S)\) 中选 \(i\) 条边使原图连通的方案数.

\(ecnt[S]\)\(G(S)\) 中所包含的边数.

然后就可以转移了

首先显然有: \(g[S][i] = C_{ecnt[S]}^{i} - f[S][i]\)

由于联通性的定义为任意两点可以到达,我们考虑钦定一个点(比如1),枚举它所能到的点集 \(T\) ,以及它不能到达的点集 \(\complement_{S}^T\), 有转移:

\[f[S][i] = \sum_{T\subsetneqq S} \sum_{j=0}^{ecnt[T]} g[T][j] \times C_{ecnt[\complement_{S}^T]}^{i-j} \]

然后就做完了。

code

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>

using namespace std;

#define LL long long
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define GO debug("GO\n")
inline int rint() {
	register int x = 0, f = 1; register char c;
	while (!isdigit(c = getchar())) if (c == '-') f  = -1;
	while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar()));
	return x * f;
}

const int N = 12, M = 55;

int n, m;
LL graph[N], cnt[1 << N], ecnt[1 << N], f[1 << N][M], g[1 << N][M];
LL C[M][M];

void init() {
	for (int i = 0; i <= m; ++ i) {
		C[i][0] = 1;
		for (int j = 1; j <= i; ++ j) 
			C[i][j] = C[i - 1][j] + C[i - 1][j - 1];
	}
}

int main() {
#ifndef ONLINE_JUDGE
	freopen("code.in", "r", stdin);
	freopen("code.out", "w", stdout);
#endif
	n = rint(), m = rint();
	init();
	for (int i = 0; i < m; ++ i) {
		int u = rint(), v = rint(); u--, v--;
		graph[u] |= (1 << v);
		graph[v] |= (1 << u);
	}
	for (int i = 0; i < 1 << n; ++ i) {
		for (int j = 0; j < n; ++ j) 
			if (i >> j & 1) 
				ecnt[i] += __builtin_popcount(graph[j] & i);
		ecnt[i] >>= 1;//每条边算了两遍
	}

	for (int S = 0; S < 1 << n; ++ S) 
		if (S & 1){
			if (__builtin_popcount(S) == 1) {
				g[S][0] = 1;
				continue;
			}
			for (int T = (S - 1) & S; T; T = (T - 1) & S)
				if (T & 1) {

					for (int i = 0; i <= ecnt[T] + ecnt[S ^ T]; ++ i) {
						for (int j = 0; j <= min(ecnt[T], 1ll * i); ++ j)
							f[S][i] += g[T][j] * C[ecnt[S ^ T]][i - j];
					}
				}
			for (int i = 0; i <= ecnt[S]; ++ i)
				g[S][i] = C[ecnt[S]][i] - f[S][i];
		}
	double ans = 0;
	for (int i = 0; i < m; ++ i)
		ans += 1.0 * f[(1 << n) - 1][i] / C[m][i];
	printf("%.6lf\n", ans / (m + 1));
}

法二:直接积分

\(p(x)\) 为答案为 \(x\) 的概率,由期望的定义:

\[ans = \int_0^1p(x)xdx \]

\(F(x)\) 为答案 \(\le x\) 的概率,有:\(F(a) = \int_0^a p(x) dx\)

考虑 \(F(x)\) 的意义:从小到大往图上加边,加入 \(\le x\) 的边图联通的概率, 也就等于 1 - P( 加入 \(\le x\) 的边原图不连通)

\(F(S,x)\) 为加入 \(\le x\)的边 \(S\) 联通的概率,有:

\[F(S, x) =1 - \sum_{S_o\subsetneqq S}F(S_0, x)(1 - x)^{ecnt(S, S - S_0)} \]

由于钦定1为基准点,所以初始 \(F(1) = 1\)

这是一个关于 \(x\) 的多项式,而且可以 \(dp\) 求得,求导后得到 \(p(x)\) 再乘以 \(x\) 再积分出来,把 \(1\) 代进去减去 \(0\) 代进去就是答案了

code

#include <iostream>
#include <cstring>
#include <vector>
#include <fstream>

typedef long long LL;
typedef unsigned long long uLL;

#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end()
#define MP(x, y) std::make_pair(x, y)
#define DE(x) cerr << x << endl;
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define GO cerr << "GO" << endl;

using namespace std;

inline void proc_status()
{
	ifstream t("/proc/self/status");
	cerr << string(istreambuf_iterator<char>(t), istreambuf_iterator<char>()) << endl;
}
inline int read() 
{
    register int x = 0; register int f = 1; register char c;
    while (!isdigit(c = getchar())) if (c == '-') f = -1;
    while (x = (x << 1) + (x << 3) + (c xor 48), isdigit(c = getchar()));
    return x * f;
}
template<class T> inline void write(T x) 
{
    static char stk[30]; static int top = 0;
    if (x < 0) { x = -x, putchar('-'); }
    while (stk[++top] = x % 10 xor 48, x /= 10, x);
    while (putchar(stk[top--]), top);
}
template<typename T> inline bool chkmin(T &a, T b) { return a > b ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; }

struct Poly
{
	vector<LL> a;

	Poly() { }

	Poly(int n) { a.resize(n); } 

	int size() { return a.size(); }

	LL& operator[](int x) 
	{ return a[x]; }

	Poly operator * (Poly B) const 
	{
		Poly ans(a.size() + B.size() - 1);
		for (int i = 0; i < SZ(B); ++i)
			for (int j = 0; j < SZ(a); ++j)
				ans[i + j] += B[i] * a[j];
		return ans;
	}

	Poly operator + (Poly B) const 
	{
		Poly ans(max(SZ(B), SZ(a)));
		for (int i = 0; i < SZ(ans); ++i)
		{
			if (i < SZ(a)) ans[i] += a[i];
			if (i < SZ(B)) ans[i] += B[i];
		}
		return ans;
	}

	Poly operator - (Poly B) const 
	{
		for (int i = 0; i < SZ(B); ++i)
			B[i] = -B[i];
		return (*this) + B;
	}

} ;

Poly deriv(Poly a)
{
	Poly b(SZ(a) - 1);
	for (int i = 0; i < SZ(b); ++i)
		b[i] = 1ll * (i + 1) * a[i + 1];
	return b;
}

int n, m, E[12], ecnt[1 << 10 | 1][1 << 10 | 1];
Poly F[1 << 11 | 1], p, PW[202];

int main() 
{
#ifndef ONLINE_JUDGE
	freopen("xhc.in", "r", stdin);
	freopen("xhc.out", "w", stdout);
#endif
	cin >> n >> m;
	for (int i = 1; i <= m; ++i) 
	{
		int u, v;
		cin >> u >> v;
		E[u - 1] |= 1 << v - 1;
		E[v - 1] |= 1 << u - 1;
	}
	for (int S = 1; S < 1 << n; ++S)
	{
		int bu = (~S) & ((1 << n) - 1);
		for (int T = bu; T; T = (T - 1) & bu)
			for (int i = 0; i < n; ++i)
				if (S >> i & 1)
					ecnt[S][T] += __builtin_popcount(E[i] & T);
	}
	PW[0].a.push_back(1);
	PW[1].a.push_back(1), PW[1].a.push_back(-1);
	for (int i = 2; i <= m; ++i) 
		PW[i] = PW[i - 1] * PW[1];
	F[1].a.push_back(1);
	for (int S = 2; S < 1 << n; ++S)
	{
		if (!(S & 1)) 
			continue;
		for (int T = (S - 1) & S; T; T = (T - 1) & S)
		{
			if (!(T & 1))
				continue;
			F[S] = F[S] - F[T] * PW[ecnt[T][S ^ T]];
		}
		F[S].a[0]++;
	}
	p = deriv(F[(1 << n) - 1]);
	Poly mul(2);
	mul[1] = 1;
	p = p * mul;
	LL res(0);
	long double ans(0);
	for (int i = 0; i < SZ(p); ++i)
		ans += (long double) (p[i] % (i + 1)) / (i + 1), res += p[i] / (i + 1);
	printf("%.6Lf\n", ans + res);
	return 0;
}
posted @ 2019-03-27 11:54  茶Tea  阅读(186)  评论(1编辑  收藏  举报