[HNOI2017]大佬

参考题解

\(\text{Solution}\)

我们发现5个行为中2操作与其它操作无关,所以我们采用贪心,尽量让多的时间去攻击大佬。

\(f[i][j]\) 表示前 \(i\) 天剩 \(j\) 血量所能攻击的最多次数,是个很简单的 \(dp\) ,决策就是刷不刷水题, ​\(D​\) 就是最多的时间。

void DP() {
  memset(f, -1, sizeof f);
  f[0][MC] = 0; 
  for (int i = 0; i < n; ++ i)
    for (int j = 0; j <= MC; ++ j) {
      if (f[i][j] == -1) continue;
      chkmax(D, f[i][j]);
      int t = j - a[i + 1]; 
      if (t < 0) continue;
      chkmax(f[i + 1][t], f[i][j] + 1);
      t = min(t + w[i + 1], MC);
      chkmax(f[i + 1][t], f[i][j]);
    }
}

那么现在就是给你很多组询问,询问是否能在 \(D\) 天内击败大佬。

考虑一个二元组 \((x, y)\) 表示达到讽刺值为 \(x\) ,能力值为 \(y\) 的最少天数。

然后这些二元组我们可以从 \((1,0)\) \(bfs\)暴力求。

void Get() {
  queue<pii> Q;
  Q.push(pii(1, 0));
  M[pii(1, 0)] = 0;

  while (Q.size()) {
    pii x = Q.front(); Q.pop();
    int now = M[x];
    if (vis[x.first])
      chkmin(V[x.first], now + 1);
    else {//V[x]: 至少到V[x]天讽刺值为x,并且明天可以继续累积
      vis[x.first] = 1;
      b[++tot] = x.first;
      V[x.first] = now + 1;
    }
    if (now >= D - 1) continue;//明天不能继续累积,只能攻击
    if (!M.count(pii(x.first, x.second + 1))) {//升级
      M[pii(x.first, x.second + 1)] = now + 1;
      Q.push(pii(x.first, x.second + 1));
    }
    if (x.second > 1 && 1ll * x.first * x.second < maxM &&
        !M.count(pii(x.first * x.second, x.second))) {//累积讽刺值
        M[pii(x.first * x.second, x.second)] = now + 1;
        Q.push(pii(x.first * x.second, x.second));
    }
  }
}

求出二元组后,对所有二元组按讽刺值排序(第一维),记 \(g[i]\) 为第 \(i\) 个二元组 \(x_i-y_i\) 的值。

考虑不怼大佬,回嘴击败大佬:

if (C < D) return true;

考虑怼一次大佬,需满足有 \(x_i\le C​\) \(\text{and}​\) \(C\le x_i +(d -y_i)=g[i]+d​\)

for (int i = 1; i <= tot; ++ i)
    if (C >= x[i] && g[i] >= C - D) 
        return 1;//怼一次

考虑怼两次大佬,需满足有 \(x_i+x_j\le C\ \text{and}\ C\le x_i+x_j+(d-y_i-y_j)\)

两个指针扫描,由于排好序先保证 \(x_i+x_j\le C\) 然后维护前缀 \(g[i]\) 最大值 \(Mx[i]\)

for (int i = 1; i <= tot; i++) {
    if (x[i] > c) 
        return 0;//如果当前大于c,那么之后必然大于c,不满足条件1,是一个小剪枝
    while (tail && x[i] + x[tail] > C) 
        --tail;//由于x单调,可能的答案在i到tail之间
    if (tail && g[i] + Mx[tail] >= C - D) 
        return 1;
}

这题难就难在将原问题抽离成两个单独的问题,将复杂的问题抽离成一些容易的,比较好处理的问题,会对结题有很大帮助,然后就是要多积累,熟悉经典问题的解法,如本题的讨论怼几次的问题上为了满足条件,运用了双指针扫描 \((two\_pointer)\) 的方法。

\(\text{Source}\)

#include <bitset>
#include <map>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <assert.h>
#include <algorithm>

using namespace std;

#define LL long long
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define GO debug("GO\n")

inline int rint() {
  register int x = 0, f = 1; register char c;
  while (!isdigit(c = getchar())) if (c == '-') f = -1;
  while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar()));
  return x * f;
}

template<typename T> inline void chkmin(T &a, T b) { a > b ? a = b : 0; }
template<typename T> inline void chkmax(T &a, T b) { a < b ? a = b : 0; }


const int N = 105;
const int maxM = 1e8 + 5;
const int maxN = 1e6 + 10;

#define pii pair<int, int>

bitset<maxM> vis;
map<pii, int> M;
map<int, int> V;
int n, m, MC, D, tot, a[N], w[N], b[maxN], f[N][N], g[maxN], Mx[maxN];

void DP() {
  memset(f, -1, sizeof f);
  f[0][MC] = 0; 
  for (int i = 0; i < n; ++ i)
    for (int j = 0; j <= MC; ++ j) {
      if (f[i][j] == -1) continue;
      chkmax(D, f[i][j]);
      int t = j - a[i + 1]; 
      if (t < 0) continue;
      chkmax(f[i + 1][t], f[i][j] + 1);
      t = min(t + w[i + 1], MC);
      chkmax(f[i + 1][t], f[i][j]);
    }
}

void Get() {
  queue<pii> Q;
  Q.push(pii(1, 0));
  M[pii(1, 0)] = 0;

  while (Q.size()) {
    pii x = Q.front(); Q.pop();
    int now = M[x];
    if (vis[x.first])
      chkmin(V[x.first], now + 1);
    else {
      vis[x.first] = 1;
      b[++tot] = x.first;
      V[x.first] = now + 1;
    }
    if (now >= D - 1) continue;
    if (!M.count(pii(x.first, x.second + 1))) {
      M[pii(x.first, x.second + 1)] = now + 1;
      Q.push(pii(x.first, x.second + 1));
    }
    if (x.second > 1 && 1ll * x.first * x.second < maxM &&
        !M.count(pii(x.first * x.second, x.second))) {
        M[pii(x.first * x.second, x.second)] = now + 1;
        Q.push(pii(x.first * x.second, x.second));
    }
  }
}

bool solve() {
  int tail = tot, C;
  scanf("%d", &C);
  if (C < D) return 1;

  for (int i = 1; i <= tot; ++ i)
    if (C >= b[i] and g[i] >= C - D) 
      return 1;

  for (int i = 1; i <= tot; ++ i) {
    if (b[i] > C) return 0;
    while (tail and b[i] + b[tail] > C) tail --;
    if (tail and g[i] + Mx[tail] >= C - D) return 1;
  }
  return 0;
}

int main() {
#ifndef ONLINE_JUDGE
  freopen("xhc.in", "r", stdin);
  freopen("xhc.out", "w", stdout);
#endif
  scanf("%d%d%d", &n, &m, &MC);
  for (int i = 1; i <= n; ++ i) scanf("%d", a + i);
  for (int i = 1; i <= n; ++ i) scanf("%d", w + i);

  DP();

  if (D == 0) {
    for (int i = 1; i <= m; ++ i) printf("0\n");
    return 0;
  }

  Get();
  sort(b + 1, b + 1 + tot);
  for (int i = 1; i <= tot; ++ i) {
    g[i] = b[i] - V[b[i]];
    Mx[i] = max(Mx[i - 1], g[i]);
  }
  while (m --) 
    puts(solve() ? "1" : "0");
}
posted @ 2019-03-25 13:41  茶Tea  阅读(178)  评论(0编辑  收藏  举报